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Abstract

We study incentive design when multiple principals simultaneously design mechanisms for their

respective teams in environments with strategic spillovers. In this environment, each principal’s set

of incentive-compatible mechanisms—those that satisfy their own agents’ incentive compatibility con-

straints—depends on the mechanisms offered by the other teams. Following a classic example by Myer-

son (1982), such games may lack equilibrium due to discontinuities in the correspondence of incentive-

compatible mechanisms. We establish general conditions for equilibrium existence by introducing a novel

approach that involves tracking both the outcome distributions along the truthful-obedient path and the

sets of outcome distributions achievable through unilateral deviations, thereby providing a foundation for

analyzing a wide range of multi-principal mechanism design with team production and agency problems.
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1 Introduction

In many economic environments, incentive design occurs simultaneously across multiple organizations, with

spillovers from each organization’s activities affecting the others. We model such environments as inter-

acting teams, where multiple principals simultaneously design mechanisms for their respective agents while

accounting for strategic interactions across teams. Examples range from competitive settings—such as com-

petition between firms in a market1 or between teams in innovation contests2—to cooperative settings such

as production along a supply chain. In these settings, team production is often more efficient than individual

production due to complementarities among team members’ skills and efforts.3 However, the presence of

adverse selection (private abilities) and moral hazard (unobservable actions) within teams complicates the

assessment of individual contributions and the allocation of rewards.4

To illustrate the issues arising from interdependent agency concerns, consider the problem each principal

faces in selecting a mechanism that specifies, among other things, how the team’s winnings are allocated.

These winnings depend on the team’s own performance and may be affected by how other teams per-

form. As a result, the mechanism that each principal selects affects not only the choices of their own

team’s agents but also the sets of incentive-compatible mechanisms available to other principals. This en-

dogeneity—where the set of incentive-compatible mechanisms available to each principal depends on other

principals’ choices—poses a fundamental challenge for modeling interacting teams with agency concerns. In-

deed, Myerson (1982) provides an example5 with two mechanism designers in which no equilibrium exists.6

This problem of multi-principal interaction can be understood as a generalized game—a game in which each

player’s feasible strategy set is endogenously determined by the strategies of other players. In this paper, we

develop a framework that provides general conditions for equilibrium existence in generalized games of this

type.

Generalized games were introduced by Debreu (1952), who establishes conditions for the existence of a

(pure-strategy) Nash equilibrium, also known as a social equilibrium.7 In a generalized game, each player

has a feasible strategy correspondence—a mapping that assigns to each profile of other players’ strategies a

set of feasible strategies for that player. When this correspondence is contained within a compact, convex

subset of Euclidean space, the existence results in Debreu (1952), Debreu (1982), and Banks and Duggan

(2004) rely critically on its lower hemicontinuity. This property ensures that small changes in other players’

strategies do not suddenly render a previously feasible choice infeasible. As Tóbiás (2022) demonstrates,

lower hemicontinuity is essential for establishing the existence of Nash equilibria in generalized games and

1See for example D’Aspremont and Jacquemin (1988), Kamien, Muller, and Zang (1992), Raith (2003), and Antón, Ederer,
Giné, and Schmalz (2023) among others.

2See for example Nitzan (1991), Esteban and Ray (2001), Nitzan and Ueda (2011), Nitzan and Ueda (2018), Balart et al.
(2016), and Konishi, Sahuguet, and Crutzen (2024) among others.

3For more on this issue, see Candoğan et al. (2025), who examines innovation contests involving a finite number of individ-
uals and/or teams with complete information and exogenous prize-sharing rules, and identifies conditions under which teams
outperform individuals.

4In the context of a single designer designing incentives for a team facing both adverse selection and moral hazard, see McAfee
and McMillan (1991). Also related are the literatures on teamwork (e.g., Admati and Perry, 1991; Yildirim, 2006; Bonatti and
Hörner, 2011; Georgiadis, 2015; Bowen, Georgiadis, and Lambert, 2019; Cetemen, Hwang, and Kaya, 2020; Ozerturk and
Yildirim, 2021; and Yildirim, 2023) and contracting with teams (e.g., Holmstrom, 1982; Itoh, 1991; Che and Yoo, 2001; Winter,
2004; and Halac, Lipnowski, and Rappoport, 2021).

5In particular, see Section 4 of Myerson (1982), entitled “Equilibria among several principals.”
6In this example, equilibrium fails to exist because the principals’ sets of feasible incentive-compatible mechanisms are not

lower hemicontinuous with respect to the other principal’s choice of mechanism. For more on the role of lower hemicontinuity
in generalized games, see Tóbiás (2022).

7For additional details, see Debreu (1982), Border (1985, Chapter 19), Facchinei and Kanzow (2010), and Dasgupta and
Maskin (2015). Related work includes Tao and Xu (2024), who demonstrate the existence of pure-strategy Bayesian Nash
equilibrium in generalized games in which the feasible strategy correspondence is uniformly continuous.
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cannot be dispensed with.8 This continuity requirement plays a central role in our analysis: it is precisely

the property that fails to hold in the Myerson (1982) example, leading to non-existence of equilibrium.

Our primary contribution is a novel approach to establishing the existence of a Bayesian-Nash Principals’

Equilibrium (BNPE) in a generalized game with team production and agency concerns. Our methodological

approach builds on two complementary strands in the literature on the existence of Bayesian-Nash equilib-

rium in Bayesian games.9 The first strand, initiated by Milgrom and Weber (1985), draws on the insight

that strategies in Bayesian games can be fully characterized by the joint probability measures they induce

over types and actions. Rather than working directly with strategy functions that map types to actions,

this distributional approach treats each player’s strategy as a probability measure on the joint type-action

space. To determine when two distributional strategies are “close” to each other—and thereby characterize

the continuity properties of payoff functions and best-response correspondences—Milgrom and Weber (1985)

use the classical narrow topology.10 This topology captures the idea that two probability distributions are

close if they assign similar probabilities to similar events, which ensures that a small change in a player’s

strategy induces only a small change in all players’ expected payoffs. This notion of closeness is particularly

well-suited for Bayesian games, where payoffs depend on the distribution of types and actions.

Building on that foundation, Kadan, Reny, and Swinkels (2017) adapt this distributional approach to

mechanism design settings by associating each incentive-compatible mechanism with an “on-path” joint

probability measure over rewards, outputs, actions, and types—the probability measure generated when all

agents truthfully report and obediently follow the intended mechanism.11 Like Milgrom and Weber (1985),

Kadan, Reny, and Swinkels (2017) work with the classical narrow topology on the space of probability

measures. However, focusing on the “on-path” outcome measure creates challenges when characterizing

the continuity properties of the set of incentive-compatible mechanisms, since incentive compatibility fun-

damentally depends on the possibility of “off-path” deviations. In the single-principal case, Kadan, Reny,

and Swinkels (2017) address this issue by making creative use of results on Young measure convergence, as

summarized in Balder (2021) and rooted in the foundational work of Komlós (1967),12 to demonstrate that

the set of incentive-compatible mechanisms is well-behaved. Unfortunately, this elegant approach does not

extend naturally to our setting with interacting teams and agency concerns.

The second strand, exemplified by Balder (1988), extends the existence results in Milgrom and Weber

(1985) by shifting focus from distributional strategies to behavior strategies. In this framework, a behavior

strategy specifies for each type of each player a probability measure over that player’s action space—that

is, the stochastically chosen action conditional on type. As in the distributional approach, Balder (1988)

makes use of the classical narrow topology to examine the continuity properties of payoff functions and best-

response correspondences on the space of behavior strategies. While Balder (1988) studies strategic-form

Bayesian games without communication or reporting, that approach can be extended to our mechanism

8Tóbiás (2022) provides a detailed account of the relevant literature. See in particular the discussion in footnote 5.
9Our work is also related to the literature on the existence of equilibria in discontinuous games initiated by Reny (1999).

The related literature is too large to comprehensively summarize here, but some notable contributions include Carmona (2009),
Barelli and Meneghel (2013), McLennan, Monteiro, and Tourky (2011), He and Yannelis (2016), Bich and Laraki (2017),
Carbonell-Nicolau and McLean (2018), Reny (2020), Olszewski and Siegel (2023), and Prokopovych and Yannelis (2023).

10Recall that a sequence of probability measures {µn} converges to µ in the narrow topology if and only if
∫
fdµn →

∫
fdµ

for every bounded continuous function f . When the underlying space is Polish (complete separable metric), this coincides with
the weak* topology on the space of probability measures.

11Recent studies have made significant progress in addressing the challenges of moral hazard and adverse selection in principal-
agent problems. Notably, Castro-Pires, Chade, and Swinkels (2024) introduce the concept of decoupling, a simple method for
studying both moral hazard and adverse selection simultaneously, and provide tests for determining its validity. Other notable
contributions include Chen, Chen, and Rietzke (2020), Ke and Xu (2023), and Gottlieb and Moreira (2022), which collectively
advance our understanding of optimal contracts and mechanisms in various settings.

12See also Balder (1984, 1985, 1998).
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design setting.

The key innovation in our approach is the combination of the behavior strategy framework of Balder

(1988) with a careful extension of the Kadan, Reny, and Swinkels (2017) approach to what it means for two

mechanisms to be “close” to each other. Our measure of closeness, or metric, imposes two simultaneous

requirements for mechanisms to be close. First, as in Kadan, Reny, and Swinkels (2017), we require that the

outcome measures along the truthful-obedient path must be similar.13 Second, and crucially, we require that

the sets of outcome measures achievable through any unilateral (behavior strategy) deviation—whether mis-

reporting types and/or disobeying recommendations—must also be similar. This ensures that as a sequence

of mechanisms converges, not only do the outcome measures along the truthful-obedient path converge, but

so do agents’ sets of achievable outcome measures under unilateral deviations.

For the truthful-obedient path, we use the narrow topology to measure convergence of the induced

probability measures, just as in the prior literature. For the complete set of outcome measures that can arise

from any unilateral (behavior strategy) deviation by an agent we use the Hausdorff metric, which measures

the distance between two sets by asking how far each point in one set is from the nearest point in the

other set. Two mechanisms are considered close under our robust narrow topology only if: (i) their on-path

outcome measures are close in the narrow sense, and (ii) their sets of achievable outcome measures from all

possible unilateral (behavior strategy) deviations are close in the Hausdorff sense. Incentive compatibility

fundamentally depends on comparing what an agent gets from being truthful and obedient versus what

they could achieve by deviating. By tracking both on-path outcome measures and unilateral deviation

outcome measures simultaneously, our topology ensures that convergence of mechanisms implies convergence

of strategic opportunities.

Our framework accommodates rich and flexible environments with multidimensional types, actions, out-

puts, and rewards, including various specifications of how team winnings map to feasible individual rewards.

The analysis relies on four categories of assumptions. First, we require the underlying spaces of types, ac-

tions, winnings, and rewards to be compact Polish spaces—that is, complete, separable, and metrizable. This

ensures that these spaces are bounded (so sequences cannot escape to infinity) and have no gaps (so every

convergent sequence has a limit point within the space). Second, we require the teams’ stochastic output

technologies to provide a sufficiently smooth and predictable landscape for principals to design incentives.

In particular, we assume that small changes in a team’s action profile lead to small, predictable changes

in the probability distribution over the team’s outputs. Third, we require the correspondence from team

winnings to feasible individual rewards to be well-behaved: it must be continuous and always map to a

non-empty compact set of feasible rewards. This assumption is satisfied in standard economic environments

where budget constraints or technological constraints smoothly determine how team winnings can be divided

among team members.14 Fourth, we assume that all players’ utility functions are bounded and continuous.

Our theory of incentive design for interacting teams contributes to two strands of the literature on

contests. We generalize the literature on contests with endogenous prize sharing, which has typically focused

on restricted sets of prize-sharing rules, to the case of the generalized principal-agent problem. Additionally,

we extend the literature on contests featuring stochastic production as a function of effort to the case of a

13The standard approach in the prior literature measures closeness between mechanisms using the classical narrow topology.
Under this topology, a sequence of probability measures converges if and only if expectations of all bounded continuous functions
converge. Applied to mechanisms, this means that two mechanisms are considered close if they produce similar expected
outcomes when all agents report their types truthfully and follow recommendations obediently.

14For example, this includes perfectly divisible monetary prizes (where the sum of individual rewards equals team winnings),
pure public goods (where each team member receives the same reward equal to team winnings), and any combination of private
and public rewards.
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general stochastic mapping from the profiles of types and actions to the profile of team winnings. Beginning

with the branch of the team contest literature with stochastic production – in the form of the Tullock contest

success function – and endogenous prize sharing,15 one common setting is the case of complete information

and a single prize that has both public good and private good aspects. In this case the endogenous sharing-

rule allocates the private good component among the team members.16 Examples of this approach include:

(i) Nitzan (1991), Nitzan and Ueda (2011), and Balart, Flamand, and Troumpounis (2016) in which the

set of feasible sharing rules is given by the set of convex combinations of a relative effort component and

fair division, (ii) Trevisan (2020), Simeonov (2020),17 Kobayashi and Konishi (2021) which allow for general

allocations of the private good component of the prize, and (iii) Kobayashi, Konishi, and Ueda (2025) which

allows for general allocations of a private good prize and the value of the prize is endogenously determined.

More closely related to our focus is the extension to the case of multiple indivisible prizes, as in Crutzen,

Flamand, and Sahuguet (2020) and Konishi, Sahuguet, and Crutzen (2024).

A key feature of our approach is the incorporation of a general stochastic mapping from the profile of

types and actions to the profile of team winnings. In the contest theory literature, it is common to allow for

stochastic production as a function of effort, with the Tullock (1980) ratio-form contest success function and

the Lazear and Rosen (1981) rank-order tournament being notable examples. Our approach builds upon this

literature on stochastic production for individual contestants (e.g., Kirkegaard (2023); Bastani et al. (2022);

Drugov and Ryvkin (2020); Ryvkin and Drugov (2020) - which extend early contributions by Fullerton

and McAfee (1999)).18 Most closely related is Kirkegaard (2023), who examines the optimal contest design

problem in this environment and frames the contest designer’s problem as a team moral hazard problem

with a finite number of agents, where the designer observes individual contestants’ stochastic outputs but

not their effort choices. By extending the stochastic production approach to accommodate a general form of

stochastic team production that depends on the profile of types and actions, our results provide a foundation

for examining a wide range of issues arising in competitive environments involving stochastic production with

agency concerns.

The remainder of this paper is organized as follows. Section 2 discusses the example in Myerson (1982)

where equilibrium fails to exist. Section 3 presents our general theoretical framework. Section 4 provides

our assumptions, introduces the metric structure, and presents an example based on Nitzan (1991). Section

5 establishes our main results on the existence of a Bayesian-Nash Principals’ Equilibrium (BNPE). Section

6 discusses implications and directions for future research.

15Also related is the strand of literature on team contests with deterministic team production, a public good prize, and
private information. This includes: Barbieri and Malueg (2014), Barbieri and Malueg (2016), Eliaz and Wu (2018), Barbieri
et al. (2019), and Barbieri and Topolyan (2021). See also Brookins and Ryvkin (2016), who – for the case where each team’s
winnings are in the form of a public good for the group – establishes the existence of equilibrium for a range of information and
production configurations.

16See also Nitzan and Ueda (2014) which examines the related issue of cost-sharing rules.
17Note that the stochastic production in Simeonov (2020) is more general but allows for the Tullock CSF as a special case.
18Note that the focus in these papers differs from our focus here in that the individual contestants are assumed to have

perfect information regarding the other contestants types (however, Ryvkin and Drugov (2020) features uncertainty regarding
the number of contestants) and as is common in the contest theory literature, the contestants are assumed to have additively
separable utility. For additional background on stochastic production in contests, see Konrad (2009) and Vojnović (2015) Also
related is the innovation competition literature (e.g., Halac et al. (2017); Moscarini and Squintani (2010); Terwiesch and Xu
(2008); and Taylor (1995) among others), which examines several formulations of individual stochastic production in contests.
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2 Myerson (1982) Example

Consider a strategic environment with two competing teams, labeled j = 1, 2. Each team j consists of

a principal pj and a team member mj . The team member has private information (their “type”), and

the principal designs a mechanism to coordinate the team’s actions. In this example, we focus on adverse

selection where team members only report their types.

The game unfolds across five stages, which we describe below and which are illustrated in Figure 1.

Stage 0 (Mechanism Design): Each principal pj chooses a coordination mechanism for their team. Specifi-

cally, principal pj selects a behavior strategy αj(·|t′j) that specifies, for each possible type report t′j ∈ {θA, θB}
from member mj , a probability distribution over recommended actions from the set {A,B,C}.

Stage 1 (Type Realization): Nature independently draws a type tj ∈ {θA, θB} for each team member mj ,

with P (tj = θA) = P (tj = θB) =
1
2 . This corresponds to node x1 in Figure 1.

Stage 2 (Type Report): Each member mj privately observes their type tj (reaching node x2 if tj = θA

or node x3 if tj = θB) and then sends a cheap-talk report t′j ∈ {θA, θB} to their principal pj . This report is

private within team j: only principal pj observes it.

Stage 3 (Action Recommendation): After observing the report t′j , principal pj uses the mechanism αj(·|t′j)
to recommend an action aj ∈ {A,B,C} (possibly stochastically). In Figure 1, this corresponds to the

information sets at nodes (x4, x6) for report t
′
j = θA and nodes (x5, x7) for report t

′
j = θB .

Stage 4 (Payoffs): The game ends with payoffs realized at the terminal nodes. Each team’s payoffs

depend on three factors: their member’s true type tj , their own recommended action aj , and the other

team’s recommended action a−j . In Figure 1, principal payoffs are shown in blue and member payoffs in

red.

N x1

pjx0 Selection of Mechanism αj(·|t′j)

αj(·|t′j = θB)αj(·|t′j = θA)

mj

x2

mj

x3

t′j = θB

t′j = θB

t′j = θA

t′j = θA

tj = θA wp 1
2

tj = θB wp 1
2 (zj ,0)

(1,6)

(0,5)
C

B

A

pj

x7

(1,6)

(zj ,0)

(0,5)
C

B

A

pj

x5

(zj ,0)

(1,6)

(0,5)
C

B

A

pj

x6

(1,6)

(0,5)

(zj ,0)

C

B

A

pj

x4

For j = 1,

z1 =

{
2 if p2 chooses A or B,

1 if p2 chooses C.

For j = 2,

z2 =

{
2 if p1 chooses C,

1 if p1 chooses A or B.

Figure 1: Illustration of Team j’s Mechanism
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Given a profile of mechanisms (α1(· | t′1), α2(· | t′2)), the team j mechanism αj(· | t′j) is said to be incentive

compatible if it is a Bayesian equilibrium for team member mj to truthfully report their type. That is, there

exists a Bayesian equilibrium in which the reporting strategy satisfies t′j(tj) = tj for each tj ∈ {θA, θB}.
In Figure 1, the truthful reporting paths (x2, x4) and (x3, x7) are emphasized in red. Team j’s incentive-

compatible mechanism correspondence, ICj , is a set-valued map that associates each mechanism of the other

team, α−j(· | t′−j), with the set of incentive-compatible mechanisms for team j, denoted ICj(α−j(· | t′−j)).

We are now in position to define a principals’ equilibrium. Consider the generalized game between

principals in which each principal j’s feasible-strategy correspondence is its incentive-compatible mechanism

correspondence ICj . A profile of mechanisms (α1(·|t′1), α2(·|t′2)) is said to be a principals’ equilibrium if each

principal j’s mechanism αj(·|t′j) is a best response to α−j(·|t′−j) among team j’s set of incentive-compatible

mechanisms ICj(α−j(·|t′−j)).

To address the issue of nonexistence of equilibrium, first note that the principals’ feasible-strategy cor-

respondences do not have closed graphs or, equivalently, are not lower hemicontinuous. We focus here on

team 1’s feasible-strategy correspondence, though a corresponding issue arises for team 2.

Specifically, suppose team 2’s mechanism chooses C with probability 1 for both possible reports, i.e.,

α2(C | t′2) = 1 for each t′2 ∈ {θA, θB}. Then team 1’s set of incentive-compatible mechanisms, IC1(α2(· | t′2)),
includes all mechanisms in which C is played with the same probability for both possible reports. However,

if team 2’s mechanism chooses A or B with strictly positive probability for either possible report, then team

1’s set of incentive-compatible mechanisms discontinuously shrinks. Consequently, team 1’s feasible-strategy

correspondence does not have a closed graph, as it lacks the continuity required for feasible strategies to

vary smoothly with changes in the other team’s mechanism.

This discontinuity in the feasible-strategy correspondences propagates to the best-response correspon-

dences, which also fail to have closed graphs. This failure results in the absence of a fixed point and the

nonexistence of a principals’ equilibrium. To see this, consider the following cycle:

• If principal 2 chooses C with probability 1 for both reports, then principal 1’s best response is to choose

A following report θA and B following report θB .

• But if principal 1 chooses A following θA and B following θB , then principal 2’s best response is to

choose A following θA and B following θB .

• If principal 2 chooses A or B with strictly positive probability for either report, then principal 1’s best

response is to choose C with probability 1 for both reports.

• But if principal 1 chooses C with probability 1 for both reports, then principal 2’s best response is also

to choose C with probability 1 for both reports.

Having illustrated how equilibrium may fail to exist, we now examine a general environment and provide

conditions under which equilibrium can be shown to exist.

3 Model

We analyze a model in which teams of agents with agency concerns interact and the teams’ principals (or

mechanism designers) initially specify mechanisms that address their respective generalized principal-agent

problems subject to feasibility constraints arising from incentive compatibility considerations. Relative to

the formulation in Myerson (1982), we introduce some additional structure – which arises naturally in many
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economic environments – around the mapping from the aggregate type and action profiles to the team payoff

profile.

Beginning with a brief overview, consider a game that consists of N teams, each comprised of n team

members,19 where an arbitrary team is denoted by j ∈ {1, 2, . . . , N} and an arbitrary team member is

denoted by i ∈ {1, 2, . . . , n}. Each team faces both adverse selection (private ability) and moral hazard

(unobservable actions) within the team. The game begins with each team’s principal specifying a team

mechanism. The ensuing continuation game unfolds as follows. First, team members privately learn their

types. Second, the team members report their types to the team through cheap, unverifiable talk. Third,

the team mechanism recommends a profile of actions to the team, and team members individually choose

unobservable actions. Fourth, team winnings are stochastically determined by the actual profiles of types

and actions. Finally, each team’s winnings are distributed among its team members as individual rewards

according to the team’s mechanism.

Having provided a brief overview of the game, we now delve deeper into each of the stages in the game, and

the following subsections provide details on the game’s progression across these four stages. We then revisit

the principals’ initial problems. Finally, we conclude this section with a summary of the multi-principal

extensive-form game with team production and agency concerns.

3.1 First (Private-Type) Stage

In the first stage, each team member privately observes their stochastic type, where the set of possible types

is denoted by T . Let P(T ) denote the set of all probability measures on the Borel sets of T , denoted B(T ).
Throughout the paper, we work with Borel sets and maps, omitting the terms ‘Borel’ and ‘measurable’ unless

clarity requires otherwise. The joint type space TnN is endowed with a probability measure H ∈ P(TnN ).

The entire joint type profile t̂ ∈ TnN is drawn according to H, and each agent (i, j)—that is, member i of

team j—is privately informed of their type ti,j .

In the following discussion, it will also be convenient to let t̂−i,j denote the entire (nN −1)-tuple of types

of all agents other then agent (i, j)—when referring to the (n− 1)-tuple of types of the members of team j

other than team member (i, j) we will use the notation t−i,j .

3.2 Second (Type-Reporting) Stage

Information revelation takes the form of cheap talk, and each team member makes an unverifiable report of

their type. For each agent (i, j), a second-stage type-reporting strategy is a function t′i,j : T → T , and the

set of stage 2 type-reporting strategies is denoted by:

T :
{
t′i,j : T → T | t′i,j is Borel measurable

}
.

3.3 Third (Action) Stage

Let A denote the space of possible actions for individual team members. We now introduce the first compo-

nent of a team mechanism, the recommended actions in the third (action) stage. In subsection 3.4 on the

fourth (team-winnings) stage, we introduce the second component of a team mechanism, the distribution

of team winnings. For any profile of reported types t′j ∈ Tn by the n members of team j, the mechanism

19The assumption of equal team sizes is for notational convenience; our results extend directly to teams with different numbers
of members.
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recommends an action profile a′j ∈ An drawn at the beginning of the third (action) stage from a transition

probability αj : Tn × B(An) → [0, 1]. For each reported type profile t′j , this assigns probabilities to sets of

action profiles, which we write as αj(·|t′j).
Then, a third-stage action strategy for agent (i, j) is a function ai,j : T × T × A → A, which takes their

private type ti,j ∈ T , their reported type t′i,j ∈ T , and their recommended action a′i,j ∈ A, and maps this

into a feasible action in A. The set of stage 3 action strategies is denoted by:

A :
{
ai,j : T × T ×A → A | ai,j is Borel measurable

}
.

The actions of the individual team members are unobservable to the team, and for any agent (i, j), a strategy

(t′⋆i,j(·), a⋆i,j(·, ·, ·)) is said to be honest and obedient if in stage 2 t′⋆i,j(ti,j) = ti,j for almost every ti,j ∈ T and

in stage 3 a⋆i,j(ti,j , ti,j , a
′
i,j) = a′i,j for almost every ti,j ∈ T and a′i,j ∈ A.

3.4 Fourth (Team-Winnings) Stage

Let W denote the set of possible team winnings. The profile of team winnings across all N teams is

determined stochastically in the fourth stage by a transition probability Λ : TnN ×AnN × B(WN ) → [0, 1].

For each profile of true types t̂ ∈ TnN and true actions â ∈ AnN across all nN agents, Λ(·|̂t, â) assigns

probabilities to sets of team winnings profiles in WN .

To model how a team’s winnings may be allocated among its members we proceed as follows. First, let

I denote the space of individual rewards, with ri,j ∈ I denoting an arbitrary reward for team j member

i, and rj ∈ In denoting an arbitrary n-tuple of rewards for team j. Next, let W : W ↠ In denote the

correspondence mapping team winnings to feasible profiles of individual rewards. For example, if the team j

winnings wj take the form of a (perfectly divisible) monetary prize, then feasibility requires that the sum of

payments to all team members not exceed total winnings:
∑N

i=1 ri,j ≤ wj with ri,j ≥ 0 for all i ∈ {1, . . . , N}.
Similarly, if the team j winnings wj take the form of a public good for the team—such as a shared prize

that each member values equally—then feasibility requires ri,j = wj for all i ∈ 1, . . . , n.

Given reported types t′j ∈ Tn, recommended actions a′j ∈ An, and team winnings wj ∈ W , the team j

mechanism distributes its winnings among its team members according to a transition probability

κj : T
n ×An ×W × B(In) → [0, 1],

where In is the space of individual rewards. For each tuple (t′j ,a
′
j , wj) ∈ Tn × An ×W , κj(·|t′j ,a′j , wj) is a

probability measure that assigns a probability to each set in B(In). Furthermore, feasibility of the mechanism

with respect to team winnings requires that the support of κj(·|t′j ,a′j , wj) is contained in W(wj) ⊆ In, where

W(wj) is the set of feasible individual rewards given team j winnings wj .

3.5 Principals’ Initial Problems

We now turn to the interaction between the principals in which each principal selects a feasible and incentive-

compatible mechanism. To set the stage for the best-response problem faced by each principal we must first:

(i) provide the definition of a team j mechanism, (ii) define the set of incentive compatible mechanisms for

team j, and (iii) specify the payoff functions for the principals.

Beginning with the definition of the team j mechanism, let K(Tn, An) denote the set of transition

probabilities that map the space of n-tuples of types Tn into the space of probability measures on An.
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Similarly, let K(Tn ×An ×W, In) denote the set of transition probabilities mapping Tn ×An ×W into the

space of probability measures on In. Applying the revelation principle, a team j mechanism is described as

follows.

Definition 3.1. A team j mechanism is a pair of transition probabilities (αj , κj) ∈ K(Tn, An)×K(Tn×An×
W, In) satisfying the support constraint: suppκj(·|t′j ,a′j , wj) ⊆ W(wj) for every (t′j ,a

′
j , wj) ∈ Tn×An×W .

Let M denote the set of mechanisms that satisfy the individual-reward feasibility constraint specified in

Definition 3.1.

We now turn to the incentive compatibility constraint and the set of incentive compatible mechanisms for

team j. For notational simplicity, we assume all agents share a common von Neumann-Morgenstern utility

function u, so that agent heterogeneity enters only through type differences.20 We adopt the convention that

ui,j(t̂, â,w, rj) denotes the utility of agent (i, j) when evaluated at type profile t̂ and action profile â—that

is, the subscript (i, j) indicates which agent’s utility is being evaluated. The utility function may depend on

agent (i, j)’s own type ti,j and action ai,j , their team members’ types and actions, and potentially the full

profiles t̂ and â to capture interdependencies across teams.

Bayesian Incentive Compatibility for team j under mechanism profilem ∈ MN requires that each member

i has no incentive to unilaterally deviate from an honest and obedient strategy (t′⋆i,j(·), a⋆i,j(·, ·, ·)).21 That is,

for all (t′i,j(·), ai,j(·, ·, ·)) ∈ T ×A,

Em

[
ui,j(t̂, â

′,w, rj)
]
≥ Em

[
ui,j(t̂, (â

′
−i,j , ai,j(ti,j , t

′
i,j(ti,j), a

′
i,j)),w, rj)

]
. (1)

The left-hand side represents agent (i, j)’s expected utility under honest and obedient play by all agents,

where t̂ denotes the true type profile and â = â′ denotes that the recommended action profile is obediently

followed by all agents. The right-hand side captures the expected utility when agent (i, j) unilaterally deviates

by misreporting their type and/or disobeying their action recommendation while all other agents remain

honest and obedient. Specifically, agent (i, j) may report type t′i,j(ti,j) instead of their true type ti,j , receive

an action recommendation a′i,j based on this report, and then choose action ai,j(ti,j , t
′
i,j(ti,j), a

′
i,j) which may

differ from the recommendation. All other agents truthfully report their types t̂−i,j and obediently follow

their recommended actions â′−i,j , which are generated by the mechanism based on the profile of reported

types (including agent (i, j)’s report).

We now examine potential deviations in the second and third stages. We first consider the effects of a devi-

ation in the third stage, where team member i disobeys their action recommendation. If team j member i de-

viates from the recommended action (ai,j(ti,j , t
′
i,j(ti,j), a

′
i,j) ̸= a′i,j) with strictly positive probability, this af-

fects the transition probability of the team winnings in the fourth stage, Λ(dw|̂t, â′−i,j , ai,j(ti,j , t
′
i,j(ti,j), a

′
i,j)),

with the realization of team j winnings, wj , entering the transition probability κj(drj |t−i,j , t
′
i,j(ti,j),a

′
j , wj)

of individual rewards allocated to team j members.

Next, we consider the effects of a deviation in the second stage, where team member i misreports their

type. If team member imisreports their type (t′i,j(ti,j) ̸= ti,j) with strictly positive probability, this affects the

transition probability of the recommended action profile in the third stage, αj(da
′
j |t−i,j , t

′
i,j(ti,j)). Then, the

realization of the recommended action profile enters the transition probabilityΛ(dw|̂t, â′−i,j , ai,j(ti,j , t
′
i,j(ti,j), a

′
i,j))

20All results extend straightforwardly to settings with agent-specific utility functions ui,j .
21Note that we abstract from individual rationality, but it is straightforward to include this additional feature.
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of the team winnings in the fourth stage, and ultimately affects the team’s individual rewards allocated

through κj .

Lastly, we specify the payoff functions for the principals. Each team j principal’s von Neumann-

Morgenstern utility function is denoted by πj : TnN × AnN × WN → R which may depend on team j’s

own winnings wj , action profile aj , and type profile tj , along with the other teams’ winnings w−j , action

profiles {{aj′} | j′ ̸= j} and type profiles {{tj′} | j′ ̸= j}.
We denote the set of all prize-feasible and incentive-compatible mechanisms for team j in the context of

the mechanism profile m−j by ICj(m−j). We are now in a position to state each team j principal’s problem

and define our equilibrium concept, Bayesian-Nash Principals’ Equilibrium (BNPE). Given team j’s set of

prize feasible and incentive compatible mechanisms ICj(m−j), the team j principal’s best-response problem

is:

sup
mj∈ICj(m−j)

Em

(
πj

(
t̂, â′,w

))
(2)

A Bayesian-Nash Principals’ Equilibrium (BNPE) is defined as follows.

Definition 3.2 (Bayesian-Nash Principals’ Equilibrium (BNPE)). A strategy profile m∗ = (m∗
1, . . . ,m

∗
N ) ∈

MN constitutes a Bayesian-Nash Principals’ Equilibrium if:

(i) Feasibility: For each principal j, m∗
j = (α∗

j , κ
∗
j ) ∈ M , which requires that the transition probability

κ∗
j ∈ K(Tn × An × W, In) satisfies the support constraint: suppκj(·|t′j ,a′j , wj) ⊆ W(wj) for every

(t′j ,a
′
j , wj) ∈ Tn ×An ×W .

(ii) Incentive Compatibility : For each team j, m∗
j ∈ ICj(m

∗
−j), where:

• Agents believe others use honest and obedient strategies, which report truthfully and follow recom-

mendations almost surely,

• For each team j member i, the Bayesian Incentive Compatibility condition given in equation 1

holds for all unilateral deviations (t′i,j(·), ai,j(·, ·, ·)) ∈ T ×A.

(iii) Principals Best-Respond: Each m∗
j solves principal j’s best-response problem defined in equation 2.

3.6 Multi-Principle Interaction with Team Production and Agency Concerns

To summarize, we examine the extensive-form game involving multiple principals interacting in an envi-

ronment with team production and agency concerns, denoted by Γ(N,n, T,A,W, I,H,Λ, u, {πj}Nj=1,W), in

which a set of N teams (each with n team members) compete in an environment in which the set of possible

team winnings is W , and the feasible individual reward correspondence W maps team winnings into a set

of feasible individual rewards profiles In.

The game begins with each team’s principal specifying a team mechanism that is feasible and incentive

compatible. The four stages of the continuation game are then summarized as follows:

1. Private-Type Stage: All nN team members privately observe their individual types, which are

jointly drawn from a probability measure H on TnN .

2. Type-Reporting Stage: The members of each team simultaneously and privately report their types

to their respective team mechanisms.
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3. Action Stage: Each team mechanism mj privately recommends an action to each of its members

based on team j’s reported types, and then all team members simultaneously choose their actions.

4. Team-Winnings Stage: The profile of team winnings w ∈ WN is drawn according to Λ, conditional

on the realized type and action profiles. Within each team j, the mechanism mj allocates the team’s

winnings wj ∈ W among its n members, where the set of feasible individual reward profiles is given by

W(wj).

4 Assumptions and the Metric Structure

We begin by stating our key assumptions and then develop the metric structure on the space of mechanisms.

Assumptions

Ambient Space Assumptions

Assumption 1 (Compact, Complete, Separable, Metrizable Spaces). We assume that the sets of individual

types, individual actions, team winnings, and individual rewards, denoted by T , A, W , and I respectively, are

compact Polish spaces endowed with their respective Borel σ-algebras. We also assume the axiom of choice

and all product sets are endowed with their product σ-algebras.

Note that from Assumption 1, it follows that P(T ), P(A), P(W ), and P(I)—the spaces of probability

measures on T , A, W , and I respectively—are all compact Polish spaces.

Joint Winnings Transition Probability Assumptions

Assumption 2 (Narrow Continuity of Λ and Support Structure). The transition probability Λ(·|̂t, â) sat-

isfies:

1. Pointwise Narrow Continuity in Type-Action Profiles: The transition probability Λ : TnN ×
AnN → P(WN ) is narrowly (weakly) continuous in the sense that for every fixed (t̂, â) ∈ TnN × AnN

and every sequence (t̂k, âk) → (t̂, â), we have:

Λ(·|̂tk, âk)
∗→ Λ(·|̂t, â)

Equivalently, for every bounded continuous f : WN → R,

lim
k→∞

∫
WN

f(w)Λ
(
dw | t̂k, âk

)
=

∫
WN

f(w)Λ
(
dw | t̂, â

)
.

2. Support Structure: There exists a family {Wt̂,â}(̂t,â)∈TnN×AnN of measurable subsets of WN such

that:

• The graph {(t̂, â,w) : w ∈ Wt̂,â} is measurable in TnN ×AnN ×WN

• Λ(Wt̂,â |̂t, â) = 1 for all (t̂, â)
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Feasible Rewards Correspondence

Assumption 3 (Compact-Valued, Convex-Valued, Continuous Feasible Rewards Correspondence). The

correspondence W : W ↠ In has nonempty, compact, convex values and is continuous (both upper and lower

hemicontinuous).

Note this assumption holds in standard cases, such as:

• Monetary prizes: W(w) = {r ∈ Rn
+ :

∑n
i=1 ri ≤ w}

• Public goods: W(w) = {r : ri = w ∀i}

Note also that it follows from Assumption 3 that the set M (of mechanisms that satisfy the individual-

reward feasibility constraint specified in Definition 3.1) is convex under pointwise convex combinations of

transition probabilities. Indeed, let (αj , κj), (α
′
j , κ

′
j) ∈ M and fix λ ∈ [0, 1]. Define

αλ
j (· | tj) := λαj(· | tj)+(1−λ)α′

j(· | tj), κλ
j (· | tj ,a′j , wj) := λκj(· | tj ,a′j , wj)+(1−λ)κ′

j(· | tj ,a′j , wj).

Convex combinations of transition probabilities are transition probabilities, so αλ
j and κλ

j are admissible

maps. For any conditioning tuple x = (t′j ,a
′
j , wj), feasibility of (αj , κj) and (α′

j , κ
′
j) implies supp κj(· |

x), supp κ′
j(· | x) ⊆ W(wj). Hence

supp κλ
j (· | x) ⊆ conv

(
supp κj(· | x) ∪ supp κ′

j(· | x)
)
⊆ W(wj),

where the last inclusion uses the convexity of W(wj). Thus (αλ
j , κ

λ
j ) ∈ M , and convexity of M follows

directly.

Utility Function Assumptions

Assumption 4 (von Neumann-Morgenstern Utility Functions). The von Neumann-Morgenstern utility func-

tion u is a bounded continuous function on TnN ×AnN ×WN ×In and the von Neumann-Morgenstern utility

functions {πj}Nj=1 are bounded continuous functions on TnN ×AnN ×WN .

Metric Structure

We work with two related outcome spaces. The baseline outcome space is

X := TnN ×AnN ×WN × InN ,

with generic element

x =
(
t̂, â′, w, r̂

)
∈ X,

recording the profile of types t̂ ∈ TnN , recommended actions â′ ∈ AnN , team winnings w ∈ WN , and

individual rewards r̂ ∈ InN .

To analyze potential deviations by a single agent, we also use an extended outcome space that records

the deviating agent’s type report and action choice. The extended outcome space for an arbitrary agent (i, j)

is

X̃ := TnN+1 ×AnN+1 ×WN × InN ,
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with generic element

x̃ =
(
t̂, t′; â′, a; w, r̂

)
∈ X̃,

where the additional coordinates t′ ∈ T and a ∈ A record agent (i, j)’s reported type and realized action,

respectively.

For a given mechanism profile m = {αj , κj}Nj=1 ∈ MN , where r̂ = {rj}Nj=1 denotes the aggregate profile

of individual rewards and w = {wj}Nj=1 denotes the aggregate profile of team winnings, the joint mechanism

components are constructed as:

κm
(
dr̂

∣∣∣ t̂, â′, w)
=

N⊗
j=1

κj

(
drj

∣∣ tj , a′j , wj

)
,

αm
(
dâ′

∣∣∣ t̂) =

N⊗
j=1

αj

(
da′j

∣∣ tj) .
Definition 4.1 (Truthful-obedient induced law). When all agents use truthful-obedient strategies, the in-

duced law (or probability measure) µ : MN → P(X) on the baseline outcome space is defined by the sequential

composition of transition probabilities:

µ(m) := H(dt̂)αm
(
dâ′

∣∣ t̂
)
Λ
(
dw

∣∣∣ t̂, â′) κm
(
dr̂

∣∣∣ t̂, â′, w)
. (3)

To build toward the robust narrow topology that our main results require, we first introduce the standard

narrow topology on the space of laws P(X) and show how the distributional mechanism approach of Kadan,

Reny, and Swinkels (2017) can be extended to our multi-team setting.

Definition 4.2 (Narrow topology on laws). Let S be a Polish space. The narrow topology (also known as

the topology of weak convergence) on P(S) is the coarsest topology making the maps

P(S) ∋ µ 7−→
∫
S

f dµ ∈ R

continuous for all bounded continuous functions f ∈ Cb(S). Equivalently, a sequence {µk} ⊂ P(S) converges

to µ ∈ P(S) in the narrow topology if and only if
∫
S
f dµk →

∫
S
f dµ for all f ∈ Cb(S).

We now extend the distributional mechanism approach of Kadan, Reny, and Swinkels (2017) to our setting

with multiple interacting teams. Each mechanism profile m = {(αj , κj)}Nj=1 ∈ MN generates a truthful-

obedient induced law µ(m) ∈ P(X). The narrow topology on P(X) is metrizable, with the Prokhorov metric

being one natural choice.

Definition 4.3 (Prokhorov Metric). For µ1, µ2 ∈ P(S), where S is a Polish space, define the Prokhorov

metric as

dP (µ
1, µ2) = inf

ϵ > 0

∣∣∣∣∣∣∣∣∣∣
µ1(A) ≤ µ2(Aϵ) + ϵ

and

µ2(A) ≤ µ1(Aϵ) + ϵ

for all Borel sets A ⊂ S


where Aϵ = {s ∈ S : d(s,A) < ϵ} denotes the open ϵ-neighborhood of A.
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Given the Prokhorov metric, define the dMN metric between mechanism profiles m1,m2 ∈ MN as:

dMN (m1,m2) = dP (µ(m
1), µ(m2)).

The metric dMN induces the narrow topology on MN , where a sequence {mk}k∈N narrowly converges

to m, denoted mk N−→ m, if:

lim
k→∞

dMN (mk,m) = lim
k→∞

dP (µ(m
k), µ(m)) = 0.

Note that dMN treats mechanism profiles as equivalent if they generate the same truthful-obedient law,

ignoring potential differences in the outcomes that arise from deviations—a limitation that becomes critical

when analyzing incentive compatibility.

Given their focus on showing that the principal’s objective function is lower semicontinuous in the single-

team case, Kadan et al. (2017) equip M1 with the metric dM1 . A key feature of this approach is that, for

any bounded continuous function f : X → R, the map

m 7→
∫

f dµ(m)

is narrowly continuous with respect to m ∈ M1. In our case, the focus will be on the correspondence of

incentive-compatible mechanisms, and it will be helpful to make use of a finer topology. Towards that end,

we now turn to the issue of potential deviations. We follow Balder (1988) and allow agents to use behavior

strategies. A behavior strategy for team j member i is a pair σi,j = (σT
i,j , σ

A
i,j), where:

• σT
i,j ∈ K(T, T ) is the type-reporting transition probability, specifying a law over reports t′ ∈ T conditional

on the agent’s true type t ∈ T ;

• σA
i,j ∈ K(T 2 ×A,A) is the action transition probability, specifying a law over actions a ∈ A conditional

on the agent’s true type, their report, and the mechanism’s action recommendation a′ ∈ A.

Letting Hi,j ∈ P(T ) denote the marginal law of agent (i, j)’s type under H, a truthful-obedient strategy

may be defined in the behavior-strategy setting as follows.

Definition 4.4 (Truthful-obedient behavior strategies). A behavior strategy σi,j ∈ K(T, T )×K(T 2 ×A,A)

is truthful-obedient if

σT
i,j( · | t) = δ t for Hi,j-almost every t ∈ T,

and

σA
i,j( · | t, t, a′) = δ a′ for Hi,j-almost every t ∈ T and all a′ ∈ A,

where δx denotes the Dirac probability measure concentrated at x.

Under a truthful-obedient strategy, the agent almost surely reports her type truthfully and (conditional

on truthful reporting) almost surely obeys the mechanism’s action recommendation. Note that the definition

does not constrain off-path behavior, though such off-path choices are almost never realized under a truthful-

obedient behavior strategy.

Definition 4.5 (Induced law under an arbitrary unilateral deviation). When all agents except (i, j) use

truthful-obedient strategies and agent (i, j) employs an arbitrary behavior strategy σi,j ∈ K(T, T ) × K(T 2 ×
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A,A), the induced law µ̃ : MN ×K(T, T )×K(T 2 ×A,A) → P(X̃) on the extended outcome space is defined

by:

µ̃(m, σi,j) := H(dt̂)σT
i,j(dt

′ | ti,j) αm
(
dâ′

∣∣ t̂−i,j , t
′)σA

i,j

(
da

∣∣ ti,j , t′, a′i,j)
Λ
(
dw

∣∣∣ t̂, (â′−i,j , a
))

κm
(
dr̂

∣∣∣ (t̂−i,j , t
′), â′,w

)
. (4)

Note that the sequential composition in (4) captures the following causal order:

1. Nature draws the profile of true types t̂ from prior H.

2. Agent (i, j) privately observes her true type ti,j and reports type t′ ∈ T according to her type-reporting

transition probability σT
i,j(dt

′ | ti,j). This is the first point where a deviation may occur.

3. The joint mechanism observes the reported type profile (t̂−i,j , t
′) and generates an action recommen-

dation profile â′ via αm
(
dâ′ | t̂−i,j , t

′). Note that the recommendation to team j depends on agent

(i, j)’s (possibly untruthful) report t′.

4. Agent (i, j) chooses action a ∈ A according to her action transition probability σA
i,j(da | ti,j , t′, a′i,j),

where a′i,j is the recommended action from team j’s mechanism. This represents the second potential

deviation point.

5. The winnings transition probability Λ realizes team winnings w based on the true type profile t̂ and

the action profile (â′−i,j , a).

6. The joint mechanism’s reward transition probability κm determines individual rewards r̂ conditional

on the reported types (t̂−i,j , t
′), recommended actions â′, and realized winnings w.

Note that this definition applies to any behavior strategy, not only to deviations. When σi,j is truthful-

obedient, the events {t′ = ti,j} and {a = a′i,j} occur almost surely, so µ̃(m, σi,j) concentrates on the

“on-path” subset of X̃.

The Set of Feasible Induced Laws achievable by Unilateral Deviations

For each mechanism profile m ∈ MN , define the feasible set of induced laws as:

Φ(m) :=
{
µ̃(m, σi,j) : σi,j ∈ K(T, T )×K(T 2 ×A,A)

}
.

This set contains all laws over extended outcomes that a single agent (i, j) can induce through their choice

of behavior strategy, given that all other agents play truthfully and obediently.

We now address how convergence of mechanism profiles is defined in our framework. A key element of

our equilibrium existence problem is the correspondence of incentive-compatible mechanisms, which forms

the endogenous feasible strategy correspondence in our generalized game. To handle this, we define a

topology that distinguishes mechanism profiles based on the deviation opportunities available to agents.

Our construction proceeds in two steps: we first introduce the Hausdorff metric, then use it to define the

robust narrow topology on the joint mechanism spaceMN , which accounts for both truthful-obedient induced

laws and the feasible sets of induced laws achievable through unilateral deviations.
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Definition 4.6 (Hausdorff metric on compact sets of laws). Let S be a Polish space. Let K(P(S)) denote

the family of nonempty compact subsets of P(S) with respect to the narrow topology, and let dSP denote the

Prokhorov metric on P(S). For C1, C2 ∈ K(P(S)), the Hausdorff distance is

dH(C1, C2) = max

{
sup
µ∈C1

inf
ν∈C2

dSP (µ, ν), sup
ν∈C2

inf
µ∈C1

dSP (µ, ν)

}
.

The Hausdorff distance measures how well one compact set of laws can be approximated by another: C1

and C2 are close in Hausdorff distance if every law in C1 is close (in Prokhorov distance) to some law in C2,

and vice versa.

We are now in position to introduce the robust narrow metric, which will allow us to examine convergence

of both the truthful-obedient induced laws and the feasible sets of induced laws achievable through unilateral

deviations.22

Definition 4.7 (Robust narrow metric). Let µ : MN → P(X) denote the truthful-obedient induced law

defined in (3), let Φ(m) denote the set of induced laws achievable through unilateral deviations from mecha-

nism profile m, let dXP denote the Prokhorov metric on P(X), and let dH denote the Hausdorff distance on

K(P(X̃)). For mechanism profiles m1,m2 ∈ MN , the robust narrow distance is

d∗MN (m1,m2) = max
{
dH

(
Φ(m1), Φ(m2)

)
, dXP

(
µ(m1), µ(m2)

)}
.

The robust narrow topology on MN incorporates two distinct proximity criteria for mechanism profiles.

Two mechanisms m1 and m2 are close in this topology when both of the following hold:

• Robustness to strategic behavior. The Hausdorff distance dH
(
Φ(m1),Φ(m2)

)
between the sets of laws

attainable through unilateral deviations is small.

• Truthful–obedient laws. The Prokhorov distance dXP
(
µ(m1), µ(m2)

)
between the truthful–obedient

induced laws is small.

We adopt the following notation for convergence:

• Qn
N−→ Q denotes narrow convergence in (P(X), dXP );

• An
H−→ A denotes Hausdorff convergence in

(
K(P(X̃)), dH

)
, where dH is induced by the Prokhorov

metric dX̃P .

Under the robust narrow metric d∗MN of Definition 4.7, a sequence (mk)k≥1 ⊂ MN converges to m ∈ MN

if and only if both components converge:

Φ(mk)
H−→ Φ(m) and µ(mk)

N−→ µ(m). (5)

Equivalently, mk → m in d∗MN if and only if

dH
(
Φ(mk),Φ(m)

)
→ 0 and dXP

(
µ(mk), µ(m)

)
→ 0.

22Note that by Assumption 1, X̃ is a compact metric space, so every law on X̃ is automatically tight. Therefore, any subset of

P(X̃)—in particular Φ(m)—is uniformly tight. By Prokhorov’s theorem, the closure Φ(m) is compact in (P(X̃), dX̃P ), ensuring
that the Hausdorff distance between such closures is well-defined.
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Note that the equilibrium concept itself (Definition 3.2) does not depend on how the mechanism space

MN is topologized: a mechanism profile m∗ constitutes a BNPE if and only if it satisfies feasibility, incentive

compatibility, and principals’ best-responding. These equilibrium conditions can be verified for any given

m∗ without reference to how mechanisms converge or how we measure distances between mechanisms.

The robust narrow topology on MN provides a natural way to measure similarity between mechanism

profiles in this environment: two mechanisms are close when they induce similar truthful-obedient outcome

laws and similar sets of outcome laws achievable through unilateral deviations. This notion of closeness

captures the two strategic dimensions relevant to each principal’s correspondence of incentive-compatible

mechanisms. As we will establish, when similarity is measured in this natural way, the best-response corre-

spondence inherits the regularity properties needed for equilibrium existence.

Example

Before moving on to our results, we present an example – a generalized principle-agent team contest along

the lines of the literature following Nitzan (1991) – that satisfies Assumptions 1-4.

Consider a contest involving N teams, each of which faces a generalized principal-agent problem while

competing for a single prize that is divisible. Each team consists of n members. In the initial stage, each

team’s principal specifies a feasible and incentive-compatible team mechanism. We begin by describing the

four stages of the continuation game, and then return to discuss the initial stage.

First (Private Type) Stage: In the first stage, the members of each team privately realize their individual

types, where the type space is T = [t, t], with 0 < t < t < ∞, and each team member’s type ti,j ∈ T is an

independent draw from a common probability measure µ ∈ P(T ).

Second (Type Reporting) Stage: In the second stage, the members of each team privately report their

types to the team principal, where for team j member i, t′i,j ∈ T denotes the reported type and ti,j denotes

the true type.

Third (Action Reporting) Stage: In the third stage, the mechanism privately recommends an action

from the action space A = [a, a], with 0 < a < a < ∞, denoted as a′i,j ∈ A for team j member i, and then the

team members simultaneously choose actions, where team j member i’s actual action is denoted as ai,j ∈ A.

Fourth (Team Winnings) Stage: In the fourth stage, each team’s winnings are determined by com-

petition in team outputs, where the output technology stochastically maps a team’s n-tuple of types and

n-tuple of actions into the team output. For a given team j profile (aj , tj) ∈ An×Tn, let Pj(·|aj , tj) denote
team j’s transition probability over the output space O = [0, 1]. The cumulative distribution function (CDF)

Fj(x|tj ,aj) is defined as:

Fj(x|tj ,aj) = Pj(o ≤ x|tj ,aj),

where o ∈ O denotes the output.

Teams are ranked by their output values, where output o is valued as V (o) = o. In this winner-take-all

contest, team winnings W = {0, 1} are allocated according to rank, with only the highest output team

receiving the prize. Team winnings take the form of a perfectly divisible monetary prize, with individual

rewards in I = [0, 1]. Within each team, the mechanism allocates the team winnings w ∈ W among the
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n team members, where the feasible set of individual reward profiles given team winnings w is W(w) =

{r ∈ In |
∑n

i=1 ri ≤ w}.
Given that the contest has a single prize, the probability that a team j has the highest value output and

wins the prize, conditional the profile â, t̂, is:

Λ
(
wj = 1, wj′ = 0 ∀j′ ̸= j | â, t̂

)
= Prob(j wins | â, t̂) =

∫ 1

0

∏
j′ ̸=j

Fj′(x|aj′ , tj′)

 dFj(x|aj , tj). (6)

We will assume that each distribution function Fj(x|aj , tj) is continuous in the parameters (aj , tj) for

each fixed x ∈ [0, 1].23

Principal’s Initial Problems To complete the specification of the example, for each team j member i,

the von Neumann-Morgenstern utility function is given by

ui,j(ri,j , ai,j , ti,j) = ri,j −
cai,j
ti,j

,

where c > 0, and for each team j principal, the von Neumann-Morgenstern utility function is given by

πj(wj) = wj .

Satisfaction of Assumptions in the Example

With respect to the updated set of assumptions, we now verify that the example satisfies Assumptions 1–4:

Ambient Space Assumptions: The example spaces T , A, W , and I satisfy the Ambient Space As-

sumptions (Assumption 1). Specifically, these spaces are all compact Polish spaces – ensuring completeness,

separability, and metrizability – and the product spaces, such as TnN and An, inherit these properties.

Joint Winnings Transition Probability Assumptions: Given the explicit formula forΛ, each outcome

w corresponds to exactly one team j winning (that is, wj = 1 and wj′ = 0 for all j′ ̸= j), satisfying the

support structure in Assumption 2. The probability assigned to team j winning is a continuous function

of the type-action profile (t̂, â). Since the measure Λ(· | t̂, â) is supported on finitely many points (the

N possible winners) and each point’s probability varies continuously with (t̂, â), the transition probability

satisfies pointwise narrow continuity as required in Assumption 2.

23Note that for the stochastic output model in which for a team j’s profile (aj , tj) ∈ An × Tn:

Fj(x|aj , tj) = Pj(o ≤ x|aj , tj) = x(
∑n

i=1 ti,jai,j),

we can substitute this into the general winning probability expression in equation (6), and it follows that the prize is awarded
via a ratio-form CSF,

Λ
(
wj = 1, wj′ = 0 ∀j′ ̸= j | â, t̂

)
= Prob(j wins | â, t̂) =

∑n
i=1 ti,jai,j∑N

j′=1

∑n
i=1 ti,j′ai,j′

.
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Feasible Rewards Correspondence Assumptions: The feasible individual rewards correspondence

W : W ↠ In, defined by

W(w) =

{
r ∈ In :

n∑
i=1

ri ≤ w

}
for w ∈ {0, 1}, satisfies the Feasible Rewards Correspondence Assumptions (Assumption 3). Indeed, W(w)

is nonempty (always contains 0 = (0, . . . , 0) ∈ In), convex-valued, and compact-valued for each w. Because

w takes only finitely many values, both upper and lower hemicontinuity hold trivially.

Utility Function Assumptions: Lastly, the example clearly satisfies the Utility Function Assumptions

(Assumption 4). Specifically, the von Neumann-Morgenstern utility function

ui,j(ri,j , ai,j , ti,j) = ri,j −
cai,j
ti,j

,

is a continuous function that is bounded on the compact domain I × A × T . Similarly, the von Neumann-

Morgenstern utility function

πj(w) = w

is a bounded continuous function on W .

5 Results

Our main result is to show that there exists a Bayesian-Nash Principals’ equilibrium (BNPE) of the multi-

principle interaction with team production and agency concerns team game Γ(N,n, T,A,W, I,H,Λ, u, {πj , }Nj=1,W).

In equilibrium, each team j makes use of a mechanism (αj , κj) that maximizes the expected payoff of

the team j principal subject to: (i) prize feasibility of the mechanism (αj , κj), and (ii) Bayesian incentive

compatibility of the mechanism (αj , κj).

5.1 Existence of Equilibrium

Our main result is stated as follows.

Theorem 1. Endow MN with the d∗MN metric. If IC(m) :=
∏N

j=1 ICj(m−j) admits a selection, then under

Assumptions 1–4, for each team j:

• ICj is nonempty, continuous, compact-valued, and convex-valued as a correspondence on the space of

the other teams’ mechanism profiles, and

• each team j principal’s expected payoff is continuous on MN and quasi-concave in mj.

Therefore, there exists a BNPE.

Before sketching the key arguments behind Theorem 1, we note that a sufficient condition for IC to

admit a selection is the existence of at least one mechanism that is always incentive compatible, as in the

example in Myerson (1982). This ensures non-emptiness of the feasible set at every mechanism profile.

The proof of Theorem 1 establishes several properties of the incentive-compatible mechanism correspon-

dence ICj under the robust narrow topology. We focus our discussion here on the continuity of ICj as a
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correspondence, which is the most technically demanding component. The robust narrow topology plays a

central role in establishing continuity by simultaneously tracking convergence of on-path induced laws and

agents’ deviation opportunities.

For completeness, we briefly outline how the remaining properties are established, with full details pro-

vided in the Appendix: ICj is compact-valued by the compactness of the underlying strategy spaces together

with the closed graph property established below; ICj is convex-valued by the linearity of agents’ expected

payoffs; continuity of each principal’s expected payoff follows along similar lines to the continuity of ICj ,

since payoffs are defined via integration against the truthful-obedient induced law; and quasi-concavity of

the principals’ expected payoffs follows from Balder (1988, Theorem 3.1).

Now we turn to sketching the proof of the continuity of ICj . To verify incentive compatibility, we

must ensure that truthful reporting and obedient action-taking weakly dominate all possible unilateral

combinations of misreporting and disobedience. Our approach makes use of our two outcome spaces: the

baseline space X containing all payoff-relevant variables, and the extended space X̃ that additionally tracks

one agent’s strategic choices. The truthful-obedient induced law µ(m) lives in P(X), while the set of induced

laws under all possible unilateral deviations by a given agent, Φ(m), lives in P(X̃).

This leads to a measurement problem: agent (i, j)’s utility depends only on payoff-relevant variables in

X, yet her deviation possibilities generate distributions over the extended outcome space X̃. To compare

an agent’s truthful-obedient payoff with her payoffs under unilateral deviations, we employ a projection

pri,j : X̃ → X that maps each extended outcome to its payoff-relevant components. This projection discards

agent (i, j)’s type report and her recommended action, retaining only the variables that affect her utility.

Since pri,j is continuous, it induces a pushforward operation on probability measures: any law µ̃ ∈ P(X̃)

over strategic choices maps to a law (pri,j)∗µ̃ ∈ P(X) over payoff-relevant outcomes, defined by24

(pri,j)∗µ̃(A) = µ̃(pr−1
i,j (A))

for measurable sets A ⊂ X. This operation computes the marginal law on X by integrating out agent (i, j)’s

type report and recommended action. The pushforward preserves the probability structure while discarding

strategically-chosen but payoff-irrelevant variables. This operation is key to our approach—it makes the

deviation set Φ(m) ⊆ P(X̃) comparable with the truthful-obedient law µ(m) ∈ P(X).

Using this pushforward, we can express agent (i, j)’s incentive compatibility slack entirely in terms of

laws on X:25

fi,j(m) =

∫
X

ui,j dµ(m) − sup
ν∈(pri,j)∗Φ(m)

∫
X

ui,j dν. (7)

This formulation depends on two objects: the truthful-obedient law µ(m) ∈ P(X) and the projected feasible

set (pri,j)∗Φ(m) ⊆ P(X) containing all outcome laws achievable through strategic deviations. The structure

of equation (7) reveals why the robust narrow metric is precisely tailored to ensure continuity of fi,j .

24Note that pr−1
i,j denotes the preimage operation. It captures all the different configurations in X̃ (with varying reports t′i,j

and recommendations a′i,j) that lead to the same payoff-relevant outcome in X.
25Regarding the closure Φ(m) in the IC slack condition: Since ui,j is continuous and bounded on the compact space X,

the payoff functional Ui,j(µ) =
∫
ui,j dµ is continuous on P(X). Moreover, the pushforward map (pri,j)∗ is continuous. The

composition µ̃ 7→ Ui,j((pri,j)∗µ̃) is therefore continuous on P(X̃). By continuity,

sup
µ̃∈Φ(m)

Ui,j((pri,j)∗µ̃) = sup
µ̃∈Φ(m)

Ui,j((pri,j)∗µ̃),

so the IC condition is equivalent whether we use Φ(m) or its closure. The closure ensures a maximizer exists (by compactness)
without affecting the constraint.
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The key insight is that the robust narrow topology accounts for both terms in (7). Its narrow topol-

ogy component ensures that expectations of bounded continuous functions vary continuously in m when

evaluated at individual measures like µ(m). Its Hausdorff component guarantees that the correspondence

m 7→ Φ(m) varies continuously—a property that follows from the equivalence between Hausdorff convergence

and Kuratowski convergence for compact subsets in Polish spaces. Since X̃ is compact Polish, the Hausdorff

metric topology coincides with the Fell topology (Beer, 1993, Corollary 5.1.11), which in turn implies both

upper and lower hemicontinuity of m 7→ Φ(m) (Beer and Rodŕıguez-López, 2010).

More specifically, the two components of the robust narrow topology correspond directly to the two terms

in (7):

• Prokhorov distance between truthful-obedient laws µ(m1) and µ(m2) ensures continuity of the first

term,
∫
X
ui,j dµ(m).

• Hausdorff distance between deviation sets Φ(m1) and Φ(m2) ensures continuity of the second term,

the supremum over all outcome laws achievable through unilateral deviations.

Together, these components guarantee that fi,j(m) is continuous in m under the robust narrow metric

via a Maximum Theorem argument: when the constraint correspondence is continuous and the objective is

bounded and continuous, the supremum function is continuous. We formally establish this as Lemma 2 in

the Appendix.

6 Conclusion

When multiple principals simultaneously design mechanisms for their respective teams, the interdependence

of their choices creates a generalized game where each principal’s feasible set of incentive-compatible mech-

anisms depends on others’ choices. As Myerson (1982) demonstrates, such games may lack equilibrium due

to discontinuities in feasible strategy correspondences. In this paper, we establish equilibrium existence for

multi-principal mechanism design in environments with strategic spillovers. Our framework—which accom-

modates multidimensional types, actions, outputs, and rewards in environments with both adverse selection

and moral hazard—provides a robust and versatile foundation for analyzing strategic environments involv-

ing multiple interacting principals. This includes settings with competing platforms, interfirm contracting

networks, and hierarchical organizations where multiple decision-makers design complementary incentive

schemes. By establishing when equilibria exist in these economically important environments, our results

open new avenues for analyzing how strategic interaction shapes the design of incentive systems.

7 Appendix: Proof of Theorem 1

We begin with an overview of the proof of Theorem 1, and then in the following subsections address each of

the steps of the proof in detail.

Overview

The proof demonstrating the existence of a Bayesian-Nash Principal’s equilibrium mechanism profile m

is summarized as follows. First, we show that the principals’ expected payoff functions {Eπj
(m)}Nj=1 are

continuous in m, with respect to the d∗M metric, and quasi-concave in mj . Second, we show that the
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correspondence ICj : MN−1 ↠ M is continuous with respect to the metric on MN−1 inherited from d∗MN ,

with compact and convex values. Third, applying Berge’s Maximum Theorem, it follows that the best-

response correspondence BRj : M
N−1 ↠ M is upper hemicontinuous with respect to the same metric, with

nonempty, compact, and convex values. Finally, we apply the Kakutani-Fan-Glicksberg fixed-point Theorem

to the best-response correspondence to demonstrate the existence of a Bayesian-Nash Principals’ equilibrium

profile of incentive-compatible mechanisms m.

We begin with the proof that the principals’ expected utility functionals are continuous and quasi-concave

Continuity and Quasi-concavity of Principal’s Expected Utility

For a given mechanism profile m = {αj , κj}Nj=1 ∈ MN , note that the expected utility functional for the team

j principal may be written as

Vπj
(m) =

∫
πjdµ(m). (8)

Lemma 1. The functional Vπj
(m), defined in equation (8) is continuous in m = (mj ,m−j) and concave in

mj = {αj , κj}.

The proof of the continuity and quasiconcavity of Vπj
(m) follows along similar lines as Balder (1988,

Theorem 3.1), which makes use of his Theorem 2.2 and Lemma 3.2.

Beginning with the continuity of Vπj
(m), by Definition 4.7, the metric d∗MN metrizes the robust narrow

topology so that mk → m implies µ(mk)
N−→ µ(m) (narrow convergence). Since πj is a bounded continu-

ous function, it follows that
∫
πj dµ(m

k) →
∫
πj dµ(m), i.e., Vπj

(mk) → Vπj
(m) and therefore Vπj

(m) is

continuous in m.

Next, the quasi-concavity of Vπj
in mj can be demonstrated as follows. For a given mechanism profile

m ∈ MN , recall the joint action recommendation mechanism component is constructed as:

αm
(
dâ′

∣∣∣ t̂) =

N⊗
j=1

αj

(
da′j

∣∣ tj) ,
where m = {αj , κj}Nj=1.

Note that the equation (8) expected utility functional for the team j principal may be rewritten as

Vπj (m) =

∫
WN×AnN×TnN

πj(t̂, â
′,w)Λ(dw | t̂, â′)αm(dâ′ | t̂)H(dt̂). (9)

For any mj = (αj , κj), m
′
j = (α′

j , κ
′
j) ∈ M , and λ ∈ [0, 1], define the joint convex combination

mλ
j =

(
αλ
j , κ

λ
j

)
:=

(
λαj + (1− λ)α′

j , λ κj + (1− λ)κ′
j

)
.

For a given mechanism profile m−j ∈ MN−1, we construct αm−j as:

αm−j

(
dâ′−j

∣∣∣ t̂−j

)
=

⊗
j′ ̸=j

αj′
(
da′j′

∣∣ tj′) .
Then:

Vπj (m
λ
j ,m−j) =

∫
πj(t̂, â

′,w)Λ(dw|̂t, â′)[λαj + (1− λ)α′
j ]
(
da′j

∣∣ tj)αm−j (dâ′−j |̂t−j)H(dt̂). (10)
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Since the integral in equation (10) is linear in [λαj +(1−λ)α′
j ] and πj is bounded (Assumption 4), it follows

that:

Vπj (m
λ
j ,m−j) = λVπj (mj ,m−j) + (1− λ)Vπj (m

′
j ,m−j), (11)

establishing that mj 7→ Vπj (mj ,m−j) is affine, and hence concave and quasiconcave, on the convex set M .

IC Correspondence: Continuity, Compactness, and Convex-Valuedness

Notation Summary

For the reader’s convenience, we review the key notation used in this subsection of the appendix. Complete

definitions and all assumptions appear in Sections 3–4 of the main text.

Consider an agent (i, j) facing a mechanism profile m. The agent observes her true type and chooses a

type report, then observes her recommended action and chooses an action. Recall that:

• X denotes the baseline outcome space, consisting of all agents’ types, implemented actions, team

winnings, and individual rewards. This is the payoff-relevant state space.

• Each agent (i, j)’s utility ui,j : X → R depends only on outcomes in the baseline space X.

• µ(m) ∈ P(X) denotes the truthful-obedient induced law on the baseline outcome space.

• X̃ denotes the extended outcome space, which augments X by additionally recording one agent’s type

report and the mechanism’s action recommendation.

• Φi,j(m) ⊆ P(X̃) denotes the set of induced laws on the extended outcome space achievable by an agent

(i, j) behavior strategy, while all other agents remain truthful and obedient.

• pri,j : X̃ → X denotes the projection that maps the extended outcome space to the baseline outcome

space by replacing agent (i, j)’s recommended action with her actual chosen action and discarding all

type reports and action recommendations.

• The pushforward measure is defined via the preimage of sets: for any measurable set B ⊆ X,

[
(pri,j)∗µ̃

]
(B) = µ̃

(
pr−1

i,j (B)
)
,

where pr−1
i,j (B) = {x̃ ∈ X̃ : pri,j(x̃) ∈ B}. By marginalizing over components (reports and recommen-

dations) that are not payoff-relevant, the pushforward induces the law on the (payoff-relevant) baseline

outcome space implied by the law µ̃ on the extended outcome space.

IC Slack

Fix a mechanism profile m ∈ MN . Recall from equation (7) that agent (i, j)’s incentive compatibility slack

under m is:

fi,j(m) =

∫
X

ui,j dµ(m) − sup
ν∈(pri,j)∗Φ(m)

∫
X

ui,j dν. (7)

The first term on the right-hand side of equation (7) is agent (i, j)’s expected utility from truth-telling

and obedience. The second term on the right-hand side of equation (7) is her maximal achievable utility
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over all possible deviations. The mechanism profile m is incentive compatible for agent (i, j) if and only if

fi,j(m) ≥ 0.

Continuity of Team j’s Correspondence of IC Mechanisms

We begin by establishing that each team j’s IC correspondence is continuous with respect to the robust

narrow metric d∗M on mechanism profiles. We then turn to establishing that it is compact-valued and

convex-valued.

Lemma 2. The incentive compatibility slack fi,j : M
N → R is continuous with respect to the robust narrow

metric d∗MN .

Proof. The proof of Lemma 2 consists of two steps.

Step 1 (truthful-obedient utility): The first term in (7),
∫
X
ui,j dµ(m), is continuous in m because by

Definition 4.7, the metric d∗MN metrizes the robust narrow topology so that mk → m implies µ(mk)
N−→

µ(m) (narrow convergence). Since ui,j is a bounded continuous function, it follows that
∫
X
ui,j dµ(m

k) →∫
X
ui,j dµ(m).

Step 2 (unilateral-deviation utility): For the second term in (7), by Definition 4.7, mk → m implies

dH(Φ(mk),Φ(m)) → 0 (Hausdorff convergence). Since X̃ is compact Polish, the Hausdorff metric topology

coincides with the Fell topology (Beer, 1993, Corollary 5.1.11), and for compact subsets, convergence in the

Fell topology is equivalent to Kuratowski convergence (Beer and Rodŕıguez-López, 2010). This implies that

the correspondence m 7→ Φ(m) is both upper and lower hemicontinuous.

Since pri,j : X̃ → X is continuous, the pushforward map (pri,j)∗ : P(X̃) → P(X) is continuous and

preserves this hemicontinuity, so that

dH

(
(pri,j)∗Φ(m

k), (pri,j)∗Φ(m)
)
→ 0.

Since ui,j is bounded and continuous, the supremum functional sup
ν∈(pri,j)∗Φ(m)

∫
X
ui,j dν is continuous with

respect to Hausdorff convergence. Therefore,

sup
ν∈(pri,j)∗Φ(mk)

∫
X

ui,j dν → sup
ν∈(pri,j)∗Φ(m)

∫
X

ui,j dν.

Note that this argument is essentially an application of the Maximum Theorem (Ok, 2007, Chapter E,

Section 3), which guarantees continuity of the maximum when the constraint correspondence is continuous

and the objective function is bounded and continuous. As established in footnote 24, the maximum exists

and equals the supremum due to compactness of Φ(m) and continuity of the objective.

Since both terms in (7) converge, it follows that fi,j(m
k) → fi,j(m). Therefore fi,j(m) is continuous in

m, and that completes the proof.

Next, note that team j’s correspondence of IC mechanisms is given by:

ICj(m−j) = {mj ∈ M : fi,j(mj ,m−j) ≥ 0 for all i in team j }.

Since ICj is defined by continuous functions (by Lemma 2) and weak inequalities, we have the following

result.
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Lemma 3. The correspondence ICj : MN−1 ↠ M is continuous with respect to the metric on MN−1

inherited from d∗MN .

Compact-valuedness of the IC correspondence.

We now turn to the compact-valuedness of the IC correspondence.

Lemma 4. For each m−j ∈ MN−1, the set ICj(m−j) ⊆ M is compact with respect to d∗M .

Lemma 4 follows from the fact that for each m−j , the sublevel set

Si(m−j) := {mj ∈ M : fi,j(mj ,m−j) ≥ 0 }

is closed in M by continuity of fi,j(·,m−j) (Lemma 2). Hence

ICj(m−j) =
⋂

i∈team j

Si(m−j)

is an intersection of finitely many closed sets, thus closed in M . Since M is compact, every closed subset is

compact; therefore ICj(m−j) is compact.

Convex-valuedness of the IC correspondence.

Next, we turn to the convex-valuedness of the IC correspondence.

Lemma 5. For each m−j ∈ MN−1, the set ICj(m−j) ⊆ M is convex.

To see this, fixm−j and supposemj ,m
′
j ∈ ICj(m−j). For any λ ∈ [0, 1], interpret the convex combination

m′′
j = λmj + (1 − λ)m′

j as a mechanism that implements mj with probability λ and m′
j with probability

1− λ. Then

fi,j(m
′′) = λfi,j(m) + (1− λ)fi,j(m

′) ≥ 0

whenever both fi,j(m) ≥ 0 and fi,j(m
′) ≥ 0. This holds for all agents (i, j) in team j, confirming that

m′′
j ∈ ICj(m−j).

Best-Response Correspondence

Given that each principal j’s objective function is continuous and quasi-concave and each ICj is continuous

and nonempty compact-valued, it follows from Berge’s Maximum Theorem (Aliprantis and Border, 2006,

Theorem 17.31) that each team j principal’s best-response correspondence is upper hemicontinuous with

compact convex values.

Theorem 2 (Berge’s Maximum Theorem). Let ϕ : X ↠ Y be a continuous correspondence between

topological spaces X and Y with nonempty compact values. Let V : Gr(ϕ) → R be a continuous function,

where Gr(ϕ) = {(x, y) ∈ X × Y | y ∈ ϕ(x)} is the graph of the correspondence.

Define the value function m : X → R by:

m(x) = sup
y∈ϕ(x)

V (x, y),
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and the correspondence of maximizers β : X ↠ Y by:

β(x) = {y ∈ ϕ(x) | V (x, y) = m(x)}.

Then:

1. The value function m(x) is continuous on X.

2. The argmax correspondence β(x) has nonempty compact values.

3. β(x) is convex-valued for all x ∈ X if V (x, y) is quasi-concave in y and ϕ(x) has convex values.

4. If Y is Hausdorff, then the argmax correspondence β(x) is upper hemicontinuous.

We can now apply Berge’s Maximum Theorem to establish properties of each team j principal’s best-

response correspondence. From Lemmas 3 and 4, the incentive-compatible correspondence ICj : MN−1 ↠

M is continuous with nonempty compact values. From Lemma 1, the principal’s payoff function Vπj
is

continuous. Since M is Hausdorff, parts (1), (2), and (4) of Berge’s theorem imply that each team j

principal’s best-response correspondence is upper hemicontinuous with nonempty compact values. Moreover,

since ICj(m−j) is convex-valued (Lemma 5) and Vπj
is quasi-concave in mj (Lemma 1), part (3) implies

that the best-response correspondence also has convex values. Thus, the (aggregate) principals’ best-response

correspondence is upper hemicontinuous with nonempty compact convex values.

Existence of Bayes-Nash Principal’s Equilibrium

Lastly, we can apply the Kakutani-Fan-Glicksberg fixed-point theorem (Aliprantis and Border, 2006, Theo-

rem 17.55) to the best-response correspondence to demonstrate the existence of a Bayesian-Nash Principals’

equilibrium.

Corollary 1. Let K be a nonempty compact convex subset of a locally convex Hausdorff space, and let the

correspondence Ψ : K ↠ K have a closed graph and nonempty convex values. Then, the set of fixed points

of Ψ is compact and nonempty.

Given that each principal’s best-response correspondence is upper hemicontinuous with nonempty com-

pact convex values, the aggregate best-response correspondence satisfies the conditions of the Kakutani-Fan-

Glicksberg fixed-point theorem. Therefore, there exists a Bayesian-Nash Principals’ equilibrium.
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Miguel Antón, Florian Ederer, Mireia Giné, and Martin Schmalz. Common ownership, competition, and top

management incentives. Journal of Political Economy, 131(5):1294–1355, 2023.

Pau Balart, Sabine Flamand, and Orestis Troumpounis. Strategic choice of sharing rules in collective contests.

Social Choice and Welfare, 46:239–262, 2016.

Erik J. Balder. A general approach to lower semicontinuity and lower closure in optimal control theory.

SIAM Journal on Control and Optimization, 22(4):570–598, 1984.

Erik J. Balder. An extension of Prohorov’s theorem for transition probabilities with applications to infinite-

dimensional lower closure problems. Rendiconti del Circolo Matematico di Palermo, 34:427–447, 1985.

Erik J. Balder. Generalized equilibrium results for games with incomplete information. Mathematics of

Operations Research, 13(2):265–276, 1988.

Erik J. Balder. Lectures on Young measure theory and its applications in economics. Technical Report 1052,

Rijksuniversiteit Utrecht. Mathematisch Instituut, 1998.

Erik J. Balder. New fundamentals of Young measure convergence. In Calculus of Variations and Optimal

Control, pages 24–48. Chapman and Hall/CRC, 2021.

J. Banks and J. Duggan. Existence of Nash equilibria on convex sets, 2004. Manuscript, California Institute

of Technology and University of Rocgester.

Stefano Barbieri and David A. Malueg. Group efforts when performance is determined by the “best shot”.

Economic Theory, 56:333–373, 2014.

Stefano Barbieri and David A. Malueg. Private-information group contests: Best-shot competition. Games

and Economic Behavior, 98:219–234, 2016.

Stefano Barbieri and Iryna Topolyan. Private-information group contests with complementarities. Journal

of Public Economic Theory, 23(5):772–800, 2021.

Stefano Barbieri, Dan Kovenock, David A. Malueg, and Iryna Topolyan. Group contests with private

information and the “weakest link”. Games and Economic Behavior, 118:382–411, 2019.

Paulo Barelli and Idione Meneghel. A note on the equilibrium existence problem in discontinuous games.

Econometrica, 81(2):813–824, 2013.
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