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Abstract

We study incentive design when multiple principals simultaneously design mechanisms for their
respective teams in environments with strategic spillovers. In this environment, each principal’s set
of incentive-compatible mechanisms—those that satisfy their own agents’ incentive compatibility con-
straints—depends on the mechanisms offered by the other teams. Following a classic example by [Myer-
son| (1982)), such games may lack equilibrium due to discontinuities in the correspondence of incentive-
compatible mechanisms. We establish general conditions for equilibrium existence by introducing a novel
approach that involves tracking both the outcome distributions along the truthful-obedient path and the
sets of outcome distributions achievable through unilateral deviations, thereby providing a foundation for

analyzing a wide range of multi-principal mechanism design with team production and agency problems.
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1 Introduction

In many economic environments, incentive design occurs simultaneously across multiple organizations, with
spillovers from each organization’s activities affecting the others. We model such environments as inter-
acting teams, where multiple principals simultaneously design mechanisms for their respective agents while
accounting for strategic interactions across teams. Examples range from competitive settings—such as com-
petition between firms in a marketEl or between teams in innovation contestsEFto cooperative settings such
as production along a supply chain. In these settings, team production is often more efficient than individual
production due to complementarities among team members’ skills and effortsEl However, the presence of
adverse selection (private abilities) and moral hazard (unobservable actions) within teams complicates the
assessment of individual contributions and the allocation of rewards[]

To illustrate the issues arising from interdependent agency concerns, consider the problem each principal
faces in selecting a mechanism that specifies, among other things, how the team’s winnings are allocated.
These winnings depend on the team’s own performance and may be affected by how other teams per-
form. As a result, the mechanism that each principal selects affects not only the choices of their own
team’s agents but also the sets of incentive-compatible mechanisms available to other principals. This en-
dogeneity—where the set of incentive-compatible mechanisms available to each principal depends on other
principals’ choices—poses a fundamental challenge for modeling interacting teams with agency concerns. In-
deed, provides an exampleﬂ with two mechanism designers in which no equilibrium existsEl
This problem of multi-principal interaction can be understood as a generalized game—a game in which each
player’s feasible strategy set is endogenously determined by the strategies of other players. In this paper, we
develop a framework that provides general conditions for equilibrium existence in generalized games of this
type.

Generalized games were introduced by 7 who establishes conditions for the existence of a
(pure-strategy) Nash equilibrium, also known as a social equilibriumﬂ In a generalized game, each player
has a feasible strategy correspondence—a mapping that assigns to each profile of other players’ strategies a
set of feasible strategies for that player. When this correspondence is contained within a compact, convex
subset of Euclidean space, the existence results in [Debreu (1952), Debreu| (1982)), and [Banks and Duggan)
rely critically on its lower hemicontinuity. This property ensures that small changes in other players’
strategies do not suddenly render a previously feasible choice infeasible. As demonstrates,

lower hemicontinuity is essential for establishing the existence of Nash equilibria in generalized games and

1See for example D’ Aspremont and Jacquemin| (1988), [Kamien, Muller, and Zang| (1992), Raith| (2003)), and |Antén, Ederer,|
|Giné, and Schmalz| (2023) among others.

See for example [Nitzan| (1991)), [Esteban and Ray| (2001)), |[Nitzan and Uedal (2011)), Nitzan and Uedal (2018), [Balart et al.|
(2016), and [Konishi, Sahuguet, and Crutzen| (2024) among others.

For more on this issue, see |Candogan et al|(2025), who examines innovation contests involving a finite number of individ-
uals and/or teams with complete information and exogenous prize-sharing rules, and identifies conditions under which teams
outperform individuals.

4In the context of a single designer designing incentives for a team facing both adverse selection and moral hazard, see McAfee
and McMillan| (1991)). Also related are the literatures on teamwork (e.g.,|/Admati and Perry}, |1991} [Yildirim) [2006} |Bonatti and

Horner), [2011} [Georgiadis|, 2015} [Bowen, Georgiadis, and Lambert] .2019|; Cetemen, Hwang, and Kaya), |2020; |Ozerturk and
Yildirim| [2021} and|Yildirim| 2023) and contracting with teams (e.g., [Holmstrom), 1982} 1991} |Che and Yoo} 2001} [Winter)

2004; and Halac, Lipnowski, and Rappoport}, [2021)).

°In particular, see Section 4 of Myerson| (1982)), entitled “Equilibria among several principals.”

6In this example, equilibrium fails to exist because the principals’ sets of feasible incentive-compatible mechanisms are not
lower hemicontinuous with respect to the other principal’s choice of mechanism. For more on the role of lower hemicontinuity
in generalized games, see [T6bias| (2022).

"For additional details, see [Debreu| (1982), [Border| (1985, Chapter 19), |[Facchinei and Kanzow| (2010), and [Dasgupta and|

(2015). Related work includes |Tao and Xu| (2024)), who demonstrate the existence of pure-strategy Bayesian Nash

equilibrium in generalized games in which the feasible strategy correspondence is uniformly continuous.




cannot be dispensed withEl This continuity requirement plays a central role in our analysis: it is precisely

the property that fails to hold in the example, leading to non-existence of equilibrium.
Our primary contribution is a novel approach to establishing the existence of a Bayesian-Nash Principals’

Equilibrium (BNPE) in a generalized game with team production and agency concerns. Our methodological

approach builds on two complementary strands in the literature on the existence of Bayesian-Nash equilib-

rium in Bayesian gamesﬂ The first strand, initiated by Milgrom and Weber| (1985)), draws on the insight

that strategies in Bayesian games can be fully characterized by the joint probability measures they induce
over types and actions. Rather than working directly with strategy functions that map types to actions,
this distributional approach treats each player’s strategy as a probability measure on the joint type-action

space. To determine when two distributional strategies are “close” to each other—and thereby characterize

the continuity properties of payoff functions and best-response correspondences—Milgrom and Weber| (1985)

use the classical narrow topologym This topology captures the idea that two probability distributions are
close if they assign similar probabilities to similar events, which ensures that a small change in a player’s
strategy induces only a small change in all players’ expected payoffs. This notion of closeness is particularly

well-suited for Bayesian games, where payoffs depend on the distribution of types and actions.

Building on that foundation, Kadan, Reny, and Swinkels (2017) adapt this distributional approach to

mechanism design settings by associating each incentive-compatible mechanism with an “on-path” joint
probability measure over rewards, outputs, actions, and types—the probability measure generated when all
agents truthfully report and obediently follow the intended mechanismE Like Milgrom and Weber| (1985)),
[Kadan, Reny, and Swinkels (2017) work with the classical narrow topology on the space of probability

measures. However, focusing on the “on-path” outcome measure creates challenges when characterizing
the continuity properties of the set of incentive-compatible mechanisms, since incentive compatibility fun-
damentally depends on the possibility of “off-path” deviations. In the single-principal case,
[and Swinkels| (2017)) address this issue by making creative use of results on Young measure convergence, as

summarized in (2021) and rooted in the foundational work of (1967) [ to demonstrate that

the set of incentive-compatible mechanisms is well-behaved. Unfortunately, this elegant approach does not

extend naturally to our setting with interacting teams and agency concerns.

The second strand, exemplified by , extends the existence results in [Milgrom and Weber|
by shifting focus from distributional strategies to behavior strategies. In this framework, a behavior
strategy specifies for each type of each player a probability measure over that player’s action space—that
is, the stochastically chosen action conditional on type. As in the distributional approach,
makes use of the classical narrow topology to examine the continuity properties of payoff functions and best-
response correspondences on the space of behavior strategies. While studies strategic-form

Bayesian games without communication or reporting, that approach can be extended to our mechanism

provides a detailed account of the relevant literature. See in particular the discussion in footnote 5.

90ur work is also related to the literature on the existence of equilibria in discontinuous games initiated by [Reny] (1999).
The related literature is too large to comprehensively summarize here, but some notable contributions include |Carmona) (2009),
Barelli and Meneghel| (2013)), McLennan, Monteiro, and Tourky| (2011), [He and Yannelis (2016), [Bich and Laraki (2017),
Carbonell-Nicolau and McLean| (2018), [Reny] (2020), Olszewski and Siegel| (2023), and |Prokopovych and Yannelis (2023).

TURecall that a sequence of probability measures {u, | converges to p in the narrow topology if and only if | fdun — [ fdu
for every bounded continuous function f. When the underlying space is Polish (complete separable metric), this coincides with
the weak* topology on the space of probability measures.

11 Recent studies have made significant progress in addressing the challenges of moral hazard and adverse selection in principal-
agent problems. Notably, [Castro-Pires, Chade, and Swinkels| (2024)) introduce the concept of decoupling, a simple method for
studying both moral hazard and adverse selection simultaneously, and provide tests for determining its validity. Other notable
contributions include |Chen, Chen, and Rietzke| (2020), [Ke and Xu| (2023), and |Gottlieb and Moreira| (2022)), which collectively
advance our understanding of optimal contracts and mechanisms in various settings.

12See also [Balder| (1984} [1985] [1998).




design setting.

The key innovation in our approach is the combination of the behavior strategy framework of [Balder
(1988) with a careful extension of the [Kadan, Reny, and Swinkels| (2017) approach to what it means for two
mechanisms to be “close” to each other. Our measure of closeness, or metric, imposes two simultaneous
requirements for mechanisms to be close. First, as in Kadan, Reny, and Swinkels| (2017)), we require that the
outcome measures along the truthful-obedient path must be similarE Second, and crucially, we require that
the sets of outcome measures achievable through any unilateral (behavior strategy) deviation—whether mis-
reporting types and/or disobeying recommendations—must also be similar. This ensures that as a sequence
of mechanisms converges, not only do the outcome measures along the truthful-obedient path converge, but
so do agents’ sets of achievable outcome measures under unilateral deviations.

For the truthful-obedient path, we use the narrow topology to measure convergence of the induced
probability measures, just as in the prior literature. For the complete set of outcome measures that can arise
from any unilateral (behavior strategy) deviation by an agent we use the Hausdorff metric, which measures
the distance between two sets by asking how far each point in one set is from the nearest point in the
other set. Two mechanisms are considered close under our robust narrow topology only if: (i) their on-path
outcome measures are close in the narrow sense, and (ii) their sets of achievable outcome measures from all
possible unilateral (behavior strategy) deviations are close in the Hausdorff sense. Incentive compatibility
fundamentally depends on comparing what an agent gets from being truthful and obedient versus what
they could achieve by deviating. By tracking both on-path outcome measures and unilateral deviation
outcome measures simultaneously, our topology ensures that convergence of mechanisms implies convergence
of strategic opportunities.

Our framework accommodates rich and flexible environments with multidimensional types, actions, out-
puts, and rewards, including various specifications of how team winnings map to feasible individual rewards.
The analysis relies on four categories of assumptions. First, we require the underlying spaces of types, ac-
tions, winnings, and rewards to be compact Polish spaces—that is, complete, separable, and metrizable. This
ensures that these spaces are bounded (so sequences cannot escape to infinity) and have no gaps (so every
convergent sequence has a limit point within the space). Second, we require the teams’ stochastic output
technologies to provide a sufficiently smooth and predictable landscape for principals to design incentives.
In particular, we assume that small changes in a team’s action profile lead to small, predictable changes
in the probability distribution over the team’s outputs. Third, we require the correspondence from team
winnings to feasible individual rewards to be well-behaved: it must be continuous and always map to a
non-empty compact set of feasible rewards. This assumption is satisfied in standard economic environments
where budget constraints or technological constraints smoothly determine how team winnings can be divided
among team membersE Fourth, we assume that all players’ utility functions are bounded and continuous.

Our theory of incentive design for interacting teams contributes to two strands of the literature on
contests. We generalize the literature on contests with endogenous prize sharing, which has typically focused
on restricted sets of prize-sharing rules, to the case of the generalized principal-agent problem. Additionally,

we extend the literature on contests featuring stochastic production as a function of effort to the case of a

13The standard approach in the prior literature measures closeness between mechanisms using the classical narrow topology.
Under this topology, a sequence of probability measures converges if and only if expectations of all bounded continuous functions
converge. Applied to mechanisms, this means that two mechanisms are considered close if they produce similar expected
outcomes when all agents report their types truthfully and follow recommendations obediently.

MFor example, this includes perfectly divisible monetary prizes (where the sum of individual rewards equals team winnings),
pure public goods (where each team member receives the same reward equal to team winnings), and any combination of private
and public rewards.



general stochastic mapping from the profiles of types and actions to the profile of team winnings. Beginning
with the branch of the team contest literature with stochastic production — in the form of the Tullock contest
success function — and endogenous prize sharingH one common setting is the case of complete information
and a single prize that has both public good and private good aspects. In this case the endogenous sharing-
rule allocates the private good component among the team membersm Examples of this approach include:
(i) Nitzan| (1991), Nitzan and Ueda (2011), and Balart, Flamand, and Troumpounis (2016) in which the
set of feasible sharing rules is given by the set of convex combinations of a relative effort component and
fair division, (ii) |Trevisan| (2020)), Simeonovi (IQOZODEH(ObayaShi and Konishi| (2021 which allow for general
allocations of the private good component of the prize, and (iii) Kobayashi, Konishi, and Uedal (2025) which

allows for general allocations of a private good prize and the value of the prize is endogenously determined.
More closely related to our focus is the extension to the case of multiple indivisible prizes, as in
[Flamand, and Sahuguet| (2020) and [Konishi, Sahuguet, and Crutzen| (2024)).

A key feature of our approach is the incorporation of a general stochastic mapping from the profile of

types and actions to the profile of team winnings. In the contest theory literature, it is common to allow for
stochastic production as a function of effort, with the |Tullock| (1980) ratio-form contest success function and

the Lazear and Rosen| (1981)) rank-order tournament being notable examples. Our approach builds upon this

literature on stochastic production for individual contestants (e.g., [Kirkegaard (2023)); Bastani et al.| (2022));
Drugov and Ryvkin| (2020); Ryvkin and Drugov| (2020) - which extend early contributions by |[Fullerton
land McA fee| (]1999[))@ Most closely related is Kirkegaard (2023), who examines the optimal contest design

problem in this environment and frames the contest designer’s problem as a team moral hazard problem

with a finite number of agents, where the designer observes individual contestants’ stochastic outputs but
not their effort choices. By extending the stochastic production approach to accommodate a general form of
stochastic team production that depends on the profile of types and actions, our results provide a foundation
for examining a wide range of issues arising in competitive environments involving stochastic production with
agency concerns.

The remainder of this paper is organized as follows. Section 2 discusses the example in
where equilibrium fails to exist. Section 3 presents our general theoretical framework. Section 4 provides
our assumptions, introduces the metric structure, and presents an example based on . Section
5 establishes our main results on the existence of a Bayesian-Nash Principals’ Equilibrium (BNPE). Section

6 discusses implications and directions for future research.

15 Also related is the strand of literature on team contests with deterministic team production, a public good prize, and
private information. This includes: [Barbieri and Malueg| (2014)), [Barbieri and Malueg] (2016)), [Eliaz and Wu| (2018)), [Barbieri|
let al| (2019), and Barbieri and Topolyan| (2021). See also |Brookins and Ryvkin| (2016), who — for the case where each team’s
winnings are in the form of a public good for the group — establishes the existence of equilibrium for a range of information and
production configurations.

16See also |Nitzan and Uedal (I2014D which examines the related issue of cost-sharing rules.

17Note that the stochastic production in is more general but allows for the Tullock CSF as a special case.

18Note that the focus in these papers differs from our focus here in that the individual contestants are assumed to have
perfect information regarding the other contestants types (however, |Ryvkin and Drugov| (2020) features uncertainty regarding
the number of contestants) and as is common in the contest theory literature, the contestants are assumed to have additively
separable utility. For additional background on stochastic production in contests, see |[Konrad| (2009) and |[Vojnovi¢, (2015) Also
related is the innovation competition literature (e.g., [Halac et al.| (2017); Moscarini and Squintani| (2010); Terwiesch and Xu|
(2008); and [Taylor| (1995) among others), which examines several formulations of individual stochastic production in contests.




2 Myerson (1982) Example

Consider a strategic environment with two competing teams, labeled j = 1,2. Each team j consists of
a principal p; and a team member m;. The team member has private information (their “type”), and
the principal designs a mechanism to coordinate the team’s actions. In this example, we focus on adverse
selection where team members only report their types.

The game unfolds across five stages, which we describe below and which are illustrated in Figure

Stage 0 (Mechanism Design): Each principal p; chooses a coordination mechanism for their team. Specifi-
cally, principal p; selects a behavior strategy a;(+[t}) that specifies, for each possible type report t; €{04,08}
from member m;, a probability distribution over recommended actions from the set {4, B, C}.

Stage 1 (Type Realization): Nature independently draws a type t; € {64,605} for each team member m;,
with P(t; = 64) = P(t; = ) = 3. This corresponds to node z; in Figure

Stage 2 (Type Report): Each member m; privately observes their type ¢; (reaching node z if t; = 64
or node 3 if t; = 0p) and then sends a cheap-talk report t; € {04,605} to their principal p;. This report is
private within team j: only principal p; observes it.

Stage 3 (Action Recommendation): After observing the report t’, principal p; uses the mechanism o (-[t})
to recommend an action a; € {A, B,C} (possibly stochastically). In Figure (I} this corresponds to the
information sets at nodes (24, ) for report t; = 4 and nodes (z5,z7) for report t; = 0p.

Stage 4 (Payoffs): The game ends with payoffs realized at the terminal nodes. Each team’s payoffs
depend on three factors: their member’s true type t;, their own recommended action a;, and the other
team’s recommended action a_;. In Figure [I} principal payoffs are shown in blue and member payoffs in
red.

Zo @ Selection of Mechanism o (-[t})

{2 if po chooses A or B, {2 if p1 chooses C,
zZ1 = 2o =

1 if py chooses C. 1 if p; chooses A or B.

Figure 1: Illustration of Team j’s Mechanism



Given a profile of mechanisms (ai (- | #1), aa(- | t5)), the team j mechanism a;(- | ) is said to be incentive
compatible if it is a Bayesian equilibrium for team member m; to truthfully report their type. That is, there
exists a Bayesian equilibrium in which the reporting strategy satisfies ¢}(t;) = t; for each t; € {04,05}.
In Figure [1} the truthful reporting paths (x2,z4) and (z3,27) are emphasized in red. Team j’s incentive-
compatible mechanism correspondence, 1C}, is a set-valued map that associates each mechanism of the other
team, a;(- | t_;), with the set of incentive-compatible mechanisms for team j, denoted IC;(a—;(- [t_;)).

We are now in position to define a principals’ equilibrium. Consider the generalized game between
principals in which each principal j’s feasible-strategy correspondence is its incentive-compatible mechanism
correspondence IC;. A profile of mechanisms (a1 (-[t]), as(:|t5)) is said to be a principals’ equilibrium if each
principal j’s mechanism oy (+[t}) is a best response to a—;(-[t ;) among team j’s set of incentive-compatible
mechanisms 1C;(a—;([t";)).

To address the issue of nonexistence of equilibrium, first note that the principals’ feasible-strategy cor-
respondences do not have closed graphs or, equivalently, are not lower hemicontinuous. We focus here on
team 1’s feasible-strategy correspondence, though a corresponding issue arises for team 2.

Specifically, suppose team 2’s mechanism chooses C' with probability 1 for both possible reports, i.e.,
az(C | th) =1 for each t, € {64,05}. Then team 1’s set of incentive-compatible mechanisms, ICy (aa(- | t5)),
includes all mechanisms in which C' is played with the same probability for both possible reports. However,
if team 2’s mechanism chooses A or B with strictly positive probability for either possible report, then team
1’s set of incentive-compatible mechanisms discontinuously shrinks. Consequently, team 1’s feasible-strategy
correspondence does not have a closed graph, as it lacks the continuity required for feasible strategies to
vary smoothly with changes in the other team’s mechanism.

This discontinuity in the feasible-strategy correspondences propagates to the best-response correspon-
dences, which also fail to have closed graphs. This failure results in the absence of a fixed point and the

nonexistence of a principals’ equilibrium. To see this, consider the following cycle:

e If principal 2 chooses C' with probability 1 for both reports, then principal 1’s best response is to choose
A following report 4 and B following report 0.

e But if principal 1 chooses A following 84 and B following g, then principal 2’s best response is to
choose A following 84 and B following 0p.

e If principal 2 chooses A or B with strictly positive probability for either report, then principal 1’s best
response is to choose C' with probability 1 for both reports.

e But if principal 1 chooses C' with probability 1 for both reports, then principal 2’s best response is also
to choose C' with probability 1 for both reports.

Having illustrated how equilibrium may fail to exist, we now examine a general environment and provide

conditions under which equilibrium can be shown to exist.

3 Model

We analyze a model in which teams of agents with agency concerns interact and the teams’ principals (or
mechanism designers) initially specify mechanisms that address their respective generalized principal-agent
problems subject to feasibility constraints arising from incentive compatibility considerations. Relative to

the formulation in [Myerson| (1982)), we introduce some additional structure — which arises naturally in many



economic environments — around the mapping from the aggregate type and action profiles to the team payoff
profile.

Beginning with a brief overview, consider a game that consists of N teams, each comprised of n team
membersE where an arbitrary team is denoted by j € {1,2,..., N} and an arbitrary team member is
denoted by ¢ € {1,2,...,n}. Each team faces both adverse selection (private ability) and moral hazard
(unobservable actions) within the team. The game begins with each team’s principal specifying a team
mechanism. The ensuing continuation game unfolds as follows. First, team members privately learn their
types. Second, the team members report their types to the team through cheap, unverifiable talk. Third,
the team mechanism recommends a profile of actions to the team, and team members individually choose
unobservable actions. Fourth, team winnings are stochastically determined by the actual profiles of types
and actions. Finally, each team’s winnings are distributed among its team members as individual rewards
according to the team’s mechanism.

Having provided a brief overview of the game, we now delve deeper into each of the stages in the game, and
the following subsections provide details on the game’s progression across these four stages. We then revisit
the principals’ initial problems. Finally, we conclude this section with a summary of the multi-principal

extensive-form game with team production and agency concerns.

3.1 First (Private-Type) Stage

In the first stage, each team member privately observes their stochastic type, where the set of possible types
is denoted by T'. Let P(T') denote the set of all probability measures on the Borel sets of T, denoted B(T).
Throughout the paper, we work with Borel sets and maps, omitting the terms ‘Borel’ and ‘measurable’ unless
clarity requires otherwise. The joint type space T™V is endowed with a probability measure H € P(T™V).
The entire joint type profile t e TV is drawn according to H, and each agent (i, j)—that is, member ¢ of
team j—is privately informed of their type t; ;.

In the following discussion, it will also be convenient to let f_L ;j denote the entire (nN — 1)-tuple of types
of all agents other then agent (i, j)—when referring to the (n — 1)-tuple of types of the members of team j

other than team member (4, j) we will use the notation t_; ;.

3.2 Second (Type-Reporting) Stage

Information revelation takes the form of cheap talk, and each team member makes an unverifiable report of
their type. For each agent (7,j), a second-stage type-reporting strategy is a function t;,j : T — T, and the
set of stage 2 type-reporting strategies is denoted by:

T : {t;j :T =T | t]; is Borel measurable}.

3.3 Third (Action) Stage

Let A denote the space of possible actions for individual team members. We now introduce the first compo-
nent of a team mechanism, the recommended actions in the third (action) stage. In subsection 3.4 on the
fourth (team-winnings) stage, we introduce the second component of a team mechanism, the distribution

of team winnings. For any profile of reported types t;- € T™ by the n members of team j, the mechanism

19The assumption of equal team sizes is for notational convenience; our results extend directly to teams with different numbers
of members.



recommends an action profile a;- € A™ drawn at the beginning of the third (action) stage from a transition
probability ¢ : T™ x B(A™) — [0,1]. For each reported type profile t;, this assigns probabilities to sets of
action profiles, which we write as a;(+[t}).

Then, a third-stage action strategy for agent (7,7) is a function a; ; : T x T' x A — A, which takes their
private type t; ; € T, their reported type t;j € T, and their recommended action a;j € A, and maps this

into a feasible action in A. The set of stage 3 action strategies is denoted by:
A {ai,j :TxTxA— A | a;; is Borel measurable}.

The actions of the individual team members are unobservable to the team, and for any agent (4, ), a strategy
(t75(), a5 ;(+,+,+)) is said to be honest and obedient if in stage 2 t;*;(t; ;) = t; ; for almost every ¢; ; € T' and

in stage 3 a ;(ti j,tij,a; ;) = a; ; for almost every ¢; ; € T and a; ; € A.

3.4 Fourth (Team-Winnings) Stage

Let W denote the set of possible team winnings. The profile of team winnings across all N teams is
determined stochastically in the fourth stage by a transition probability A : TN x A™N x B(WN) — [0, 1].
For each profile of true types t € T™N and true actions a € A" across all nN agents, A(-[t,a) assigns
probabilities to sets of team winnings profiles in W,

To model how a team’s winnings may be allocated among its members we proceed as follows. First, let
I denote the space of individual rewards, with r; ; € I denoting an arbitrary reward for team j member
i, and r; € I" denoting an arbitrary n-tuple of rewards for team j. Next, let W : W — I™ denote the
correspondence mapping team winnings to feasible profiles of individual rewards. For example, if the team j
winnings w; take the form of a (perfectly divisible) monetary prize, then feasibility requires that the sum of
payments to all team members not exceed total winnings: Zfi1 ri; <wjwithr;,; >0forallie {1,...,N}.
Similarly, if the team j winnings w; take the form of a public good for the team—such as a shared prize
that each member values equally—then feasibility requires r; ; = w; foralli € 1,...,n.

Given reported types t; € T, recommended actions a;» € A", and team winnings w; € W, the team j

mechanism distributes its winnings among its team members according to a transition probability
Kj T x A" x W x B(I") — [0,1],

where I™ is the space of individual rewards. For each tuple (t},a’,w;) € T" x A" x W, r;(-[t},a}, w;) is a

probability measure that assigns a probability to each set in B(I™). Furthermore, feasibility of the mechanism
i
W(w,) is the set of feasible individual rewards given team j winnings w;.

with respect to team winnings requires that the support of r;(:|t}, a}, w;) is contained in W(w;) C I", where

3.5 Principals’ Initial Problems

We now turn to the interaction between the principals in which each principal selects a feasible and incentive-
compatible mechanism. To set the stage for the best-response problem faced by each principal we must first:
(i) provide the definition of a team j mechanism, (ii) define the set of incentive compatible mechanisms for
team j, and (iii) specify the payoff functions for the principals.

Beginning with the definition of the team j mechanism, let (7", A™) denote the set of transition

probabilities that map the space of n-tuples of types T into the space of probability measures on A™.



Similarly, let C(T™ x A™ x W, I"™) denote the set of transition probabilities mapping 7" x A™ x W into the
space of probability measures on I"™. Applying the revelation principle, a team j mechanism is described as

follows.

Definition 3.1. A team j mechanism is a pair of transition probabilities (oj, ;) € K(T™, A™) x K(T™ x A™ x

w;) CW(w,) for every (t),a’,w;) € T™ x A" x W.

W, I™) satisfying the support constraint: supp k;(-|t}, a hal,

J? J’

Let M denote the set of mechanisms that satisfy the individual-reward feasibility constraint specified in
Definition B.11

We now turn to the incentive compatibility constraint and the set of incentive compatible mechanisms for
team j. For notational simplicity, we assume all agents share a common von Neumann-Morgenstern utility
function u, so that agent heterogeneity enters only through type diﬁ"erencesm We adopt the convention that
U (f, a,w,r;) denotes the utility of agent (4, j) when evaluated at type profile t and action profile a—that
is, the subscript (4, j) indicates which agent’s utility is being evaluated. The utility function may depend on
agent (4,7)’s own type t; ; and action a; ;, their team members’ types and actions, and potentially the full
profiles t and a to capture interdependencies across teams.

Bayesian Incentive Compatibility for team j under mechanism profile m € M~ requires that each member
i has no incentive to unilaterally deviate from an honest and obedient strategy (¢;*(-), a; ;(+,, ") E That is,
for all (¢] ;(-),ai;(---) € T x A,

o~

Eon (3,568, w,1)] 2 B [, B 5, it 5 (8), af 1)) wory) | (1)

The left-hand side represents agent (i, j)’s expected utility under honest and obedient play by all agents,
where t denotes the true type profile and a = @’ denotes that the recommended action profile is obediently
followed by all agents. The right-hand side captures the expected utility when agent (i, j) unilaterally deviates
by misreporting their type and/or disobeying their action recommendation while all other agents remain
honest and obedient. Specifically, agent (7, j) may report type #; ;(¢;,;) instead of their true type t; ;, receive
an action recommendation a; ; based on this report, and then choose action a; ;(t; irg> ti j(tij),a; ;) which may
differ from the recommendation. All other agents truthfully report their types t,Z, ; and obediently follow
their recommended actions a’_; ;,

types (including agent (7, j)’s report).

which are generated by the mechanism based on the profile of reported

We now examine potential deviations in the second and third stages. We first consider the effects of a devi-
ation in the third stage, where team member 4 disobeys their action recommendation. If team j member i de-

viates from the recommended action (a;;(ti ;,t; ; (i ;), a; ;) # a; ;) with strictly positive probability, this af-

fects the transition probability of the team winnings in the fourth stage, A(dw|t, al, ,a;(tig,t;(tig), ai ),

with the realization of team j winnings, w;, entering the transition probability ;(dr;[t—; ;,t; ; (i ;), @}, w;)
of individual rewards allocated to team j members.

Next, we consider the effects of a deviation in the second stage, where team member ¢ misreports their
type. If team member 7 misreports their type (¢; ;(ti,;) # ti ;) with strictly positive probability, this affects the

transition probability of the recommended action profile in the third stage, a;j(da’[t_; j,t; ;(ti ;)). Then, the

realization of the recommended action profile enters the transition probability A (dw/|t,a’ o @i (ti g, ] i (tig), ai ;)

20 All results extend straightforwardly to settings with agent-specific utility functions Ug,j-
2INote that we abstract from individual rationality, but it is straightforward to include this additional feature.



of the team winnings in the fourth stage, and ultimately affects the team’s individual rewards allocated
through x;.

Lastly, we specify the payoff functions for the principals. FEach team j principal’s von Neumann-
Morgenstern utility function is denoted by 7; : TV x A™¥ x W — R which may depend on team j’s
own winnings w;, action profile a;, and type profile t;, along with the other teams’ winnings w_;, action
profiles {{ay } | j' # j} and type profiles {{t;'} | j' # j}.

We denote the set of all prize-feasible and incentive-compatible mechanisms for team j in the context of
the mechanism profile m_; by IC;(m_;). We are now in a position to state each team j principal’s problem
and define our equilibrium concept, Bayesian-Nash Principals’ Equilibrium (BNPE). Given team j’s set of
prize feasible and incentive compatible mechanisms IC;(m_;), the team j principal’s best-response problem
is:

sup  Em (ﬂ'j <f, a, W)) (2)
m;€lC;(m_;)

A Bayesian-Nash Principals’ Equilibrium (BNPE) is defined as follows.

Definition 3.2 (Bayesian-Nash Principals’ Equilibrium (BNPE)). A strategy profile m* = (m7f,...,m}y) €

MV constitutes o Bayesian-Nash Principals’ Equilibrium if:

(i) Feasibility: For each principal j, m} = (a,k}) € M, which requires that the transition probability

ki € K(T™ x A" x W,I") satisfies the support constraint: supp k;(-[t},a), w;) € W(w;) for every

(ti,a),w;) € T" x A" x W.
(ii) Incentive Compatibility : For each team j, m; € IC;(m?* ;), where:

o Agents believe others use honest and obedient strategies, which report truthfully and follow recom-

mendations almost surely,

o For each team j member i, the Bayesian Incentive Compatibility condition given in equation

holds for all unilateral deviations (t; ;(-),a;;(-,-,-)) € T x A.

(ii) Principals Best-Respond: Each m} solves principal j’s best-response problem defined in equation @

3.6 Multi-Principle Interaction with Team Production and Agency Concerns

To summarize, we examine the extensive-form game involving multiple principals interacting in an envi-
ronment with team production and agency concerns, denoted by I'(N,n,T, A, W, I, H, A, u, {7, };-V:l, W), in
which a set of N teams (each with n team members) compete in an environment in which the set of possible
team winnings is W, and the feasible individual reward correspondence W maps team winnings into a set
of feasible individual rewards profiles I"™.

The game begins with each team’s principal specifying a team mechanism that is feasible and incentive

compatible. The four stages of the continuation game are then summarized as follows:

1. Private-Type Stage: All n/N team members privately observe their individual types, which are

jointly drawn from a probability measure H on TV

2. Type-Reporting Stage: The members of each team simultaneously and privately report their types

to their respective team mechanisms.

10



3. Action Stage: Each team mechanism m; privately recommends an action to each of its members

based on team j’s reported types, and then all team members simultaneously choose their actions.

4. Team-Winnings Stage: The profile of team winnings w € W is drawn according to A, conditional
on the realized type and action profiles. Within each team j, the mechanism m; allocates the team’s

winnings w; € W among its n members, where the set of feasible individual reward profiles is given by

W(w])

4 Assumptions and the Metric Structure

We begin by stating our key assumptions and then develop the metric structure on the space of mechanisms.

Assumptions
Ambient Space Assumptions

Assumption 1 (Compact, Complete, Separable, Metrizable Spaces). We assume that the sets of individual
types, individual actions, team winnings, and individual rewards, denoted by T', A, W, and I respectively, are
compact Polish spaces endowed with their respective Borel o-algebras. We also assume the axiom of choice

and all product sets are endowed with their product o-algebras.

Note that from Assumption [1} it follows that P(T"), P(A), P(W), and P(I)—the spaces of probability

measures on 7', A, W, and I respectively—are all compact Polish spaces.

Joint Winnings Transition Probability Assumptions

Assumption 2 (Narrow Continuity of A and Support Structure). The transition probability A(-|€, a) sat-

isfies:

1. Pointwise Narrow Continuity in Type-Action Profiles: The transition probability A : T™N x
AN — P(WN) is narrowly (weakly) continuous in the sense that for every fized (t,a) € T™N x A"N

and every sequence (fk,ﬁk) — (?, a), we have:
A(-[t, @) = A([t,8)
Equivalently, for every bounded continuous f : WN — R,

lim f(w)A(dw |€k,ak) - /WN F(w) A(dw %, a) .

k—oc0 WN

2. Support Structure: There exists a family {WE,E}(?,Q)eTanAnN of measurable subsets of W such
that:

e The graph {(t,a,w) : w € W; 4} is measurable in T™N x AN x WV

o A(Wi5lt,a) =1 for all (t,3)

11



Feasible Rewards Correspondence

Assumption 3 (Compact-Valued, Convex-Valued, Continuous Feasible Rewards Correspondence). The
correspondence W : W — I™ has nonempty, compact, convex values and is continuous (both upper and lower

hemicontinuous).
Note this assumption holds in standard cases, such as:
o Monetary prizes: W(w) = {r e R? : 3" | r; < w}
e Public goods: W(w) = {r:r;, = w Vi}

Note also that it follows from Assumption |3| that the set M (of mechanisms that satisfy the individual-
reward feasibility constraint specified in Definition is convex under pointwise convex combinations of
transition probabilities. Indeed, let (ay, k), (o), %) € M and fix A € [0, 1]. Define

oy (-] 65) = Xay( | t) (A=A (- [ t5), k(| tg,a%wy) = Xr;(- | b5, a5, w)+(1=X) K(- | t5,a), w)).

A

Convex combinations of transition probabilities are transition probabilities, so a;

and n?‘ are admissible

/ /

maps. For any conditioning tuple z = (t},a},w;), feasibility of (a;,x;) and (o), «’;) implies supp r;(- |

), supp #5(- | ) € W(w;). Hence

supp (- | 2) € conv (supp k(- | @) Usupp (- | ) ) € Wlwy),

where the last inclusion uses the convexity of W(w;). Thus (o@‘, ﬁj‘) € M, and convexity of M follows

directly.

Utility Function Assumptions

Assumption 4 (von Neumann-Morgenstern Utility Functions). The von Neumann-Morgenstern utility func-
tion u is a bounded continuous function on T™N x A™N x WN x I™ and the von Neumann-Morgenstern utility

functions {r; };VZI are bounded continuous functions on T™N x AN x W,

Metric Structure

We work with two related outcome spaces. The baseline outcome space is
X =T"N x AN 5 WV x N,

with generic element
T = (‘E,ﬁ’,w,?) € X,

recording the profile of types t e N , recommended actions @’ € A™Y, team winnings w € W, and
individual rewards ¥ € 1™V,

To analyze potential deviations by a single agent, we also use an extended outcome space that records
the deviating agent’s type report and action choice. The extended outcome space for an arbitrary agent (i, )
is

X =TV APNHL e W s 1Y
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with generic element

z= (f, t'; @, a; w, T) € X,

where the additional coordinates ¢ € T and a € A record agent (i, )’s reported type and realized action,
respectively.

For a given mechanism profile m = {¢;, nj}é\’:l € MY, where T = {r, }jvzl denotes the aggregate profile
of individual rewards and w = {w; }é\le denotes the aggregate profile of team winnings, the joint mechanism

components are constructed as:

N
K™ (di‘\ ,t\, 5’, W) = ®l€j (dI’j ‘tj, a}, wj) s
j=1
N
a™ (dﬁ’ /t\> = ®aj (daf | t;) .

Jj=1

Definition 4.1 (Truthful-obedient induced law). When all agents use truthful-obedient strategies, the in-
duced law (or probability measure) i : MN — P(X) on the baseline outcome space is defined by the sequential

composition of transition probabilities:

p(m) = H(dE) a™(da’ | t) A(dw

t, 5’) K™ (df

1@, w) . (3)

To build toward the robust narrow topology that our main results require, we first introduce the standard
narrow topology on the space of laws P(X) and show how the distributional mechanism approach of Kadan,

Reny, and Swinkels (2017 can be extended to our multi-team setting.

Definition 4.2 (Narrow topology on laws). Let S be a Polish space. The narrow topology (also known as
the topology of weak convergence) on P(S) is the coarsest topology making the maps

P(S)Bu»—>/sfd,u€R

continuous for all bounded continuous functions f € Cyp(S). Equivalently, a sequence {ug} C P(S) converges
to p € P(S) in the narrow topology if and only if [ fdux — [g fdu for all f € Cy(S).

We now extend the distributional mechanism approach of[Kadan, Reny, and Swinkels| (2017)) to our setting
with multiple interacting teams. Each mechanism profile m = {(ajmj)};y:l € MY generates a truthful-
obedient induced law p(m) € P(X). The narrow topology on P(X) is metrizable, with the Prokhorov metric
being one natural choice.

Definition 4.3 (Prokhorov Metric). For p',u? € P(S), where S is a Polish space, define the Prokhorov
metric as

i (A) < pB(A%) + €

and

pA(A) < pt(A9) +e

for all Borel sets A C S

dp(p*, p?) =inf{ e >0

where A = {s € S : d(s, A) < €} denotes the open e-neighborhood of A.

13



Given the Prokhorov metric, define the dj;~ metric between mechanism profiles m', m? € M as:
dy~ (m', m?) = dp(p(m'), p(m?)).

The metric dy;~ induces the narrow topology on M”, where a sequence {m*}cn narrowly converges

to m, denoted m* ~ m, if:

lim dy v (m*, m) = lim dp(u(m"), u(m)) = 0.

k—o0 k—o0

Note that dj;~ treats mechanism profiles as equivalent if they generate the same truthful-obedient law,
ignoring potential differences in the outcomes that arise from deviations—a limitation that becomes critical
when analyzing incentive compatibility.

Given their focus on showing that the principal’s objective function is lower semicontinuous in the single-
team case, Kadan et al| (2017) equip M! with the metric dy;1. A key feature of this approach is that, for

any bounded continuous function f : X — R, the map

m /fdu(m)

is narrowly continuous with respect to m € M?'. In our case, the focus will be on the correspondence of
incentive-compatible mechanisms, and it will be helpful to make use of a finer topology. Towards that end,
we now turn to the issue of potential deviations. We follow Balder| (1988)) and allow agents to use behavior

strategies. A behavior strategy for team j member i is a pair o; ; = (aiTj, UZAj), where:

) O'g:j € K(T,T) is the type-reporting transition probability, specifying a law over reports ¢’ € T conditional
on the agent’s true type t € T

° af}j € K(T? x A, A) is the action transition probability, specifying a law over actions a € A conditional

on the agent’s true type, their report, and the mechanism’s action recommendation a’ € A.

Letting H, ; € P(T) denote the marginal law of agent (¢, j)’s type under H, a truthful-obedient strategy

may be defined in the behavior-strategy setting as follows.

Definition 4.4 (Truthful-obedient behavior strategies). A behavior strategy o; ; € K(T,T) x K(T? x A, A)
is truthful-obedient if

crij:j(' | t) =0+ for H; ;-almost everyt € T,
and
Ufj(- | t,t,a") =084 for H; j-almost everyt € T and all a' € A,

where §, denotes the Dirac probability measure concentrated at x.

Under a truthful-obedient strategy, the agent almost surely reports her type truthfully and (conditional
on truthful reporting) almost surely obeys the mechanism’s action recommendation. Note that the definition
does not constrain off-path behavior, though such off-path choices are almost never realized under a truthful-

obedient behavior strategy.

Definition 4.5 (Induced law under an arbitrary unilateral deviation). When all agents except (i,7) use

truthful-obedient strategies and agent (i,j) employs an arbitrary behavior strategy o; ; € K(T,T) x K(T? x

14



A, A), the induced law i : MY x K(T,T) x K(T? x A, A) — P(X) on the extended outcome space is defined
by:

ﬁ(m, Ui,j) = H(di',\) O'Zj(dt/ | ti’j) am(dﬁ' ’ %\,i)j,t/) Uf}j (da ’ ti)j, t/, a;’j>
A(dw ’f, (@ a)) K™ (d?

-7

Note that the sequential composition in captures the following causal order:
1. Nature draws the profile of true types t from prior H.

2. Agent (1, j) privately observes her true type t; ; and reports type t’ € T according to her type-reporting

transition probability 027: ;(dt" | t; ;). This is the first point where a deviation may occur.

o~

3. The joint mechanism observes the reported type profile (t_; ;,t') and generates an action recommen-
dation profile @’ via o™ (da’ | /t\,i,j,t’ ). Note that the recommendation to team j depends on agent

(,7)’s (possibly untruthful) report ¢'.

4. Agent (i,j) chooses action a € A according to her action transition probability Uf}j(da | tij,t',a; ;)
where ag,j is the recommended action from team j’s mechanism. This represents the second potential

deviation point.

5. The winnings transition probability A realizes team winnings w based on the true type profile t and

the action profile (a’, ;, a).

6. The joint mechanism’s reward transition probability kK™ determines individual rewards T conditional
on the reported types (’t\_i)j, t"), recommended actions @', and realized winnings w.
Note that this definition applies to any behavior strategy, not only to deviations. When o; ; is truthful-
obedient, the events {t' = ¢; ;} and {a = a; ;} occur almost surely, so ji(m,0; ;) concentrates on the
“on-path” subset of X.

The Set of Feasible Induced Laws achievable by Unilateral Deviations

For each mechanism profile m € MY, define the feasible set of induced laws as:
®(m) = {fi(m,0;;) : 0;; € K(T,T) x K(T?> x A, A) }.

This set contains all laws over extended outcomes that a single agent (4,j) can induce through their choice
of behavior strategy, given that all other agents play truthfully and obediently.

We now address how convergence of mechanism profiles is defined in our framework. A key element of
our equilibrium existence problem is the correspondence of incentive-compatible mechanisms, which forms
the endogenous feasible strategy correspondence in our generalized game. To handle this, we define a
topology that distinguishes mechanism profiles based on the deviation opportunities available to agents.
Our construction proceeds in two steps: we first introduce the Hausdorff metric, then use it to define the
robust narrow topology on the joint mechanism space M, which accounts for both truthful-obedient induced

laws and the feasible sets of induced laws achievable through unilateral deviations.
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Definition 4.6 (Hausdorff metric on compact sets of laws). Let S be a Polish space. Let K(P(S)) denote
the family of nonempty compact subsets of P(S) with respect to the narrow topology, and let dISD denote the
Prokhorov metric on P(S). For Cy,Cy € K(P(S)), the Hausdorff distance is

dp(Ch,Cs) = max{ sup inf dP(u,v), sup inf d%(u,l/)}.
peC, veC2 veC, MECT

The Hausdorff distance measures how well one compact set of laws can be approximated by another: C
and Cy are close in Hausdorff distance if every law in C} is close (in Prokhorov distance) to some law in Ca,
and vice versa.

We are now in position to introduce the robust narrow metric, which will allow us to examine convergence
of both the truthful-obedient induced laws and the feasible sets of induced laws achievable through unilateral
deviations 2]

Definition 4.7 (Robust narrow metric). Let p : MY — P(X) denote the truthful-obedient induced law
defined in , let ®(m) denote the set of induced laws achievable through unilateral deviations from mecha-
nism profile m, let d35 denote the Prokhorov metric on P(X), and let dy denote the Hausdorff distance on

K(P(X)). For mechanism profiles m*, m2? € MY, the robust narrow distance is
o (!, m?) = max {dyy (B(mT), D(m?) ), dF (u(m"), p(m?)) } .

The robust narrow topology on MY incorporates two distinct proximity criteria for mechanism profiles.

Two mechanisms m! and m? are close in this topology when both of the following hold:

e Robustness to strategic behavior. The Hausdorff distance dp (®(m?!), ®(m?)) between the sets of laws

attainable through unilateral deviations is small.

o Truthful-obedient laws. The Prokhorov distance d: (,u(ml),,u(mQ)) between the truthful-obedient

induced laws is small.
We adopt the following notation for convergence:
e Q. 2 Q denotes narrow convergence in (P(X),d%);

o A, XL A denotes Hausdorff convergence in (K(P()N( )),dm), where dy is induced by the Prokhorov

o dX
metric d3p.

Under the robust narrow metric d},~ of Definition , a sequence (m¥);>1 € MY converges tom € M¥Y

if and only if both components converge:

®(mk) A, ®(m) and p(mh) N, p(m). (5)
Equivalently, m* — m in dy,~ if and only if

dp(®(m*), ®(m)) -+ 0 and dp(u(m"),u(m)) — 0.

22Note that by Assumption Xisa compact metric space, so every law on X is automatically tight. Therefore, any subset of

P(X)—in particular ®(m)—is uniformly tight. By Prokhorov’s theorem, the closure ®(m) is compact in (P(X), d¥), ensuring
that the Hausdorft distance between such closures is well-defined.
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Note that the equilibrium concept itself (Definition does not depend on how the mechanism space
M7V is topologized: a mechanism profile m* constitutes a BNPE if and only if it satisfies feasibility, incentive
compatibility, and principals’ best-responding. These equilibrium conditions can be verified for any given
m* without reference to how mechanisms converge or how we measure distances between mechanisms.

The robust narrow topology on M¥ provides a natural way to measure similarity between mechanism
profiles in this environment: two mechanisms are close when they induce similar truthful-obedient outcome
laws and similar sets of outcome laws achievable through unilateral deviations. This notion of closeness
captures the two strategic dimensions relevant to each principal’s correspondence of incentive-compatible
mechanisms. As we will establish, when similarity is measured in this natural way, the best-response corre-

spondence inherits the regularity properties needed for equilibrium existence.

Example

Before moving on to our results, we present an example — a generalized principle-agent team contest along
the lines of the literature following |Nitzan| (1991) — that satisfies Assumptions 1-4.

Consider a contest involving N teams, each of which faces a generalized principal-agent problem while
competing for a single prize that is divisible. Each team consists of n members. In the initial stage, each
team’s principal specifies a feasible and incentive-compatible team mechanism. We begin by describing the

four stages of the continuation game, and then return to discuss the initial stage.

First (Private Type) Stage: In the first stage, the members of each team privately realize their individual
types, where the type space is T = [t,t], with 0 < t < ¢ < oo, and each team member’s type t; ; € T is an

independent draw from a common probability measure p € P(T).

Second (Type Reporting) Stage: In the second stage, the members of each team privately report their
types to the team principal, where for team j member 4, t;j € T denotes the reported type and ¢; ; denotes

the true type.

Third (Action Reporting) Stage: In the third stage, the mechanism privately recommends an action
from the action space A = [a,a], with 0 < a < @ < oo, denoted as aéyj € A for team j member ¢, and then the

team members simultaneously choose actions, where team j member ¢’s actual action is denoted as a; ; € A.

Fourth (Team Winnings) Stage: In the fourth stage, each team’s winnings are determined by com-
petition in team outputs, where the output technology stochastically maps a team’s n-tuple of types and
n-tuple of actions into the team output. For a given team j profile (a;,t;) € A™ x T™, let P;(-|a;, t;) denote
team j’s transition probability over the output space O = [0,1]. The cumulative distribution function (CDF)
Fj(z|t;,a;) is defined as:

Fy(xltj, a;) = Pj(o < xlt;, ),

where o € O denotes the output.

Teams are ranked by their output values, where output o is valued as V' (0) = o. In this winner-take-all
contest, team winnings W = {0,1} are allocated according to rank, with only the highest output team
receiving the prize. Team winnings take the form of a perfectly divisible monetary prize, with individual

rewards in I = [0,1]. Within each team, the mechanism allocates the team winnings w € W among the
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n team members, where the feasible set of individual reward profiles given team winnings w is W(w) =
{rer |0 r<wl
Given that the contest has a single prize, the probability that a team j has the highest value output and

wins the prize, conditional the profile &, t, is:

1
Awj =1, wj =0Vj' #j|a, /t\) = Prob(j wins | a, t) = /0 H Fj (xzlaj,t;) | dFj(z|a;,t;).  (6)
J'#i

We will assume that each distribution function Fj(x|a;,t;) is continuous in the parameters (a;,t;) for
each fixed z € [0, 1]

Principal’s Initial Problems To complete the specification of the example, for each team j member i,
the von Neumann-Morgenstern utility function is given by
ca;
i i (Ti,js @igo i) = Tij — ——
i,

where ¢ > 0, and for each team j principal, the von Neumann-Morgenstern utility function is given by
mj(w;) = w;.

Satisfaction of Assumptions in the Example

With respect to the updated set of assumptions, we now verify that the example satisfies Assumptions

Ambient Space Assumptions: The example spaces T, A, W, and I satisfy the Ambient Space As-
sumptions (Assumption . Specifically, these spaces are all compact Polish spaces — ensuring completeness,

separability, and metrizability — and the product spaces, such as 7™ and A", inherit these properties.

Joint Winnings Transition Probability Assumptions: Given the explicit formula for A, each outcome
w corresponds to exactly one team j winning (that is, w; = 1 and wj» = 0 for all j* # j), satisfying the
support structure in Assumption The probability assigned to team j winning is a continuous function
of the type-action profile (f, a). Since the measure A(- | t, a) is supported on finitely many points (the
N possible winners) and each point’s probability varies continuously with (f, a), the transition probability

satisfies pointwise narrow continuity as required in Assumption

23Note that for the stochastic output model in which for a team j’s profile (aj,tj) € A™ x T™:
Fy(alag, t;) = Py(o < alay, t;) = a(5i=1 trsons),
we can substitute this into the general winning probability expression in equation @), and it follows that the prize is awarded
via a ratio-form CSF,
>y iy

Alwj =1, wy =0Vj #3|3, f) = Prob(j wins | 8, t) = SN S e
§'=122i=1 Y5’ Vi,j
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Feasible Rewards Correspondence Assumptions: The feasible individual rewards correspondence
W : W — I", defined by

W(w) = {re[":zn:ri <w}
i=1

for w € {0, 1}, satisfies the Feasible Rewards Correspondence Assumptions (Assumption . Indeed, W(w)
is nonempty (always contains 0 = (0,...,0) € I"), convex-valued, and compact-valued for each w. Because

w takes only finitely many values, both upper and lower hemicontinuity hold trivially.

Utility Function Assumptions: Lastly, the example clearly satisfies the Utility Function Assumptions
(Assumption . Specifically, the von Neumann-Morgenstern utility function
ca; ;
i (Tigs Qg tig) =Tij — ——,
Lij
is a continuous function that is bounded on the compact domain I x A x T. Similarly, the von Neumann-
Morgenstern utility function

mj(w) =w

is a bounded continuous function on W.

5 Results

Our main result is to show that there exists a Bayesian-Nash Principals’ equilibrium (BNPE) of the multi-

principle interaction with team production and agency concerns team game I'(N, n, T, A, W, I, H, A, u, {7, }f[:l, W).
In equilibrium, each team j makes use of a mechanism (a;, ;) that maximizes the expected payoff of

the team j principal subject to: (i) prize feasibility of the mechanism (a;, £;), and (ii) Bayesian incentive

compatibility of the mechanism (o, &;).

5.1 Existence of Equilibrium

Our main result is stated as follows.

Theorem 1. Endow M™ with the d%,y metric. If IC(m) := va:1 IC;(m_;) admits a selection, then under

Assumptions 1-4, for each team j:

o IC; is nonempty, continuous, compact-valued, and conver-valued as a correspondence on the space of

the other teams’ mechanism profiles, and

e cach team j principal’s expected payoff is continuous on M and quasi-concave in m;.
Therefore, there exists a BNPE.

Before sketching the key arguments behind Theorem 1, we note that a sufficient condition for IC' to
admit a selection is the existence of at least one mechanism that is always incentive compatible, as in the
example in Myerson| (1982)). This ensures non-emptiness of the feasible set at every mechanism profile.

The proof of Theorem 1 establishes several properties of the incentive-compatible mechanism correspon-

dence IC; under the robust narrow topology. We focus our discussion here on the continuity of IC; as a
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correspondence, which is the most technically demanding component. The robust narrow topology plays a
central role in establishing continuity by simultaneously tracking convergence of on-path induced laws and
agents’ deviation opportunities.

For completeness, we briefly outline how the remaining properties are established, with full details pro-
vided in the Appendix: IC} is compact-valued by the compactness of the underlying strategy spaces together
with the closed graph property established below; IC; is convex-valued by the linearity of agents’ expected
payoffs; continuity of each principal’s expected payoff follows along similar lines to the continuity of IC},
since payoffs are defined via integration against the truthful-obedient induced law; and quasi-concavity of
the principals’ expected payoffs follows from Balder| (1988, Theorem 3.1).

Now we turn to sketching the proof of the continuity of IC;. To verify incentive compatibility, we
must ensure that truthful reporting and obedient action-taking weakly dominate all possible unilateral
combinations of misreporting and disobedience. Our approach makes use of our two outcome spaces: the
baseline space X containing all payoff-relevant variables, and the extended space X that additionally tracks
one agent’s strategic choices. The truthful-obedient induced law p(m) lives in P(X), while the set of induced
laws under all possible unilateral deviations by a given agent, ®(m), lives in P(X ).

This leads to a measurement problem: agent (7,;)’s utility depends only on payoff-relevant variables in
X, yet her deviation possibilities generate distributions over the extended outcome space X. To compare
an agent’s truthful-obedient payoff with her payoffs under unilateral deviations, we employ a projection
pr; X — X that maps each extended outcome to its payoff-relevant components. This projection discards
agent (7, 7)’s type report and her recommended action, retaining only the variables that affect her utility.

Since pr; ; is continuous, it induces a pushforward operation on probability measures: any law 1 € P()Z' )

over strategic choices maps to a law (pr; ;).pt € P(X) over payoff-relevant outcomes, defined byﬁ
(pr; ;) «A(A) = A(pr;; (A))

for measurable sets A C X. This operation computes the marginal law on X by integrating out agent (i, 7)’s
type report and recommended action. The pushforward preserves the probability structure while discarding
strategically-chosen but payoff-irrelevant variables. This operation is key to our approach—it makes the
deviation set ®(m) C P(X) comparable with the truthful-obedient law p(m) € P(X).

Using this pushforward, we can express agent (¢,7)’s incentive compatibility slack entirely in terms of
laws on X

fij(m) = /Xui,jdu(m) - sup /Xui’jdy' (7)

VG(Pri,J‘)*(D(m)

This formulation depends on two objects: the truthful-obedient law p(m) € P(X) and the projected feasible

set (pr; ;). ®(m) C P(X) containing all outcome laws achievable through strategic deviations. The structure

of equation @ reveals why the robust narrow metric is precisely tailored to ensure continuity of f; ;.

24Note that pr;j1 denotes the preimage operation. It captures all the different configurations in X (with varying reports j
and recommendations a/ j) that lead to the same payoff-relevant outcome in X.

25Regarding the closure ®(m) in the IC slack condition: Since u;,j is continuous and bounded on the compact space X,
the payoff functional U;,; () = [ wi,; du is continuous on P(X). Moreover, the pushforward map (pr; ;). is continuous. The

composition fi = U ;((pr; ;)«p) is therefore continuous on P(X). By continuity,

_sup Mi,j((pri,j)*/j): up ui,j((Pri,j)*ﬁL
RE®(m) ned(m)

so the IC condition is equivalent whether we use ®(m) or its closure. The closure ensures a maximizer exists (by compactness)
without affecting the constraint.
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The key insight is that the robust narrow topology accounts for both terms in . Its narrow topol-
ogy component ensures that expectations of bounded continuous functions vary continuously in m when
evaluated at individual measures like p(m). Its Hausdorff component guarantees that the correspondence
m — m varies continuously—a property that follows from the equivalence between Hausdorff convergence
and Kuratowski convergence for compact subsets in Polish spaces. Since X is compact Polish, the Hausdorff
metric topology coincides with the Fell topology (Beer, 1993, Corollary 5.1.11), which in turn implies both

upper and lower hemicontinuity of m — ®(m) (Beer and Rodriguez-Lépez, [2010).

More specifically, the two components of the robust narrow topology correspond directly to the two terms
in :

e Prokhorov distance between truthful-obedient laws p(m?!) and px(m?) ensures continuity of the first

term, [ u;; dp(m).

e Hausdorff distance between deviation sets ®(m!) and ®(m?) ensures continuity of the second term,

the supremum over all outcome laws achievable through unilateral deviations.

Together, these components guarantee that f; ;(m) is continuous in m under the robust narrow metric
via a Maximum Theorem argument: when the constraint correspondence is continuous and the objective is
bounded and continuous, the supremum function is continuous. We formally establish this as Lemma [2] in

the Appendix.

6 Conclusion

When multiple principals simultaneously design mechanisms for their respective teams, the interdependence
of their choices creates a generalized game where each principal’s feasible set of incentive-compatible mech-
anisms depends on others’ choices. As|Myerson| (1982) demonstrates, such games may lack equilibrium due
to discontinuities in feasible strategy correspondences. In this paper, we establish equilibrium existence for
multi-principal mechanism design in environments with strategic spillovers. Our framework—which accom-
modates multidimensional types, actions, outputs, and rewards in environments with both adverse selection
and moral hazard—provides a robust and versatile foundation for analyzing strategic environments involv-
ing multiple interacting principals. This includes settings with competing platforms, interfirm contracting
networks, and hierarchical organizations where multiple decision-makers design complementary incentive
schemes. By establishing when equilibria exist in these economically important environments, our results

open new avenues for analyzing how strategic interaction shapes the design of incentive systems.

7 Appendix: Proof of Theorem 1

We begin with an overview of the proof of Theorem 1, and then in the following subsections address each of

the steps of the proof in detail.

Overview

The proof demonstrating the existence of a Bayesian-Nash Principal’s equilibrium mechanism profile m
is summarized as follows. First, we show that the principals’ expected payoff functions {Ex, (m)}, are

continuous in m, with respect to the dj, metric, and quasi-concave in m;. Second, we show that the
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MN>
with compact and convex values. Third, applying Berge’s Maximum Theorem, it follows that the best-

correspondence IC; : M N=1 _, M is continuous with respect to the metric on MV ~! inherited from d

response correspondence BR; : M N=1 _, M is upper hemicontinuous with respect to the same metric, with
nonempty, compact, and convex values. Finally, we apply the Kakutani-Fan-Glicksberg fixed-point Theorem
to the best-response correspondence to demonstrate the existence of a Bayesian-Nash Principals’ equilibrium
profile of incentive-compatible mechanisms m.

We begin with the proof that the principals’ expected utility functionals are continuous and quasi-concave

Continuity and Quasi-concavity of Principal’s Expected Utility

For a given mechanism profile m = {a;, k; }§V=1 € MY note that the expected utility functional for the team

7 principal may be written as
Ve, m) = [ (). ®)

Lemma 1. The functional V., (m), defined in equation @) is continuous in m = (m;, m_,) and concave in
m; = {a;, Kj}.

The proof of the continuity and quasiconcavity of Vi (m) follows along similar lines as |Balder| (1988,
Theorem 3.1), which makes use of his Theorem 2.2 and Lemma 3.2.

Beginning with the continuity of V; (m), by Definition the metric d},~ metrizes the robust narrow
topology so that m* — m implies p(m”) o, p(m) (narrow convergence). Since 7; is a bounded continu-
ous function, it follows that [ du(m"*) — [m;du(m), ie., Vi, (m*) — V; (m) and therefore V;, (m) is
continuous in m.

Next, the quasi-concavity of V;, in m; can be demonstrated as follows. For a given mechanism profile

m € MY, recall the joint action recommendation mechanism component is constructed as:

N

t) = ®a;(aa) |t)).

j=1

a™ (dﬁ’

where m = {oy, 5},

Note that the equation expected utility functional for the team j principal may be rewritten as

Ve, (m) = / 7;(t,a’, w) A(dw | t,a’) a™(da’ | t) H(dt). (9)

WN x AnN xTnN

= (a},r}) € M, and X € [0, 1], define the joint convex combination

m) = (a;‘,n;‘) = ()\ozj +(1 f)\)oz;-, Akj+ (1 —/\)H;).

For a given mechanism profile m_; € M~ =1 we construct a™-i as:

am—f (dﬁl_] ,E_j) = ® Oéj/(da;/ tj/) .
J3'#3
Then:
Ve, (m},m_;) = / m; (6, &, w)A(dwl[t,a")[Aa; + (1 — Ao (da); | t;) o™ (da_;[t—;) H (db). (10)
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Since the integral in equation is linear in [Aa; + (1 —A)a’;] and 7; is bounded (Assumption , it follows
that:

Va, (m? m_;) = AV, (mj,m_;) + (1 — ) Vg, (m;, m_j), (11)

77 77

establishing that m; — V. (m;,m_;) is affine, and hence concave and quasiconcave, on the convex set M.

IC Correspondence: Continuity, Compactness, and Convex-Valuedness

Notation Summary

For the reader’s convenience, we review the key notation used in this subsection of the appendix. Complete
definitions and all assumptions appear in Sections of the main text.
Consider an agent (i, j) facing a mechanism profile m. The agent observes her true type and chooses a

type report, then observes her recommended action and chooses an action. Recall that:

e X denotes the baseline outcome space, consisting of all agents’ types, implemented actions, team

winnings, and individual rewards. This is the payoff-relevant state space.
e Each agent (4, j)’s utility u; ; : X — R depends only on outcomes in the baseline space X.
e u(m) € P(X) denotes the truthful-obedient induced law on the baseline outcome space.

e X denotes the extended outcome space, which augments X by additionally recording one agent’s type

report and the mechanism’s action recommendation.

e & i(m)C P(X) denotes the set of induced laws on the extended outcome space achievable by an agent

J
i,7) behavior strategy, while all other agents remain truthful and obedient.

® pr,;: X — X denotes the projection that maps the extended outcome space to the baseline outcome
space by replacing agent (7, j)’s recommended action with her actual chosen action and discarding all

type reports and action recommendations.

e The pushforward measure is defined via the preimage of sets: for any measurable set B C X,

[(pr; ;)<12] (B) = fi(pr7  (B)),

where pr;_ Jl B)={ieX: pr; ;(Z) € B}. By marginalizing over components (reports and recommen-
dations) that are not payoff-relevant, the pushforward induces the law on the (payoff-relevant) baseline

outcome space implied by the law 1 on the extended outcome space.

IC Slack

Fix a mechanism profile m € MY. Recall from equation that agent (4, j)’s incentive compatibility slack

under m is:

fi,j(m) = /Xum-du(m) - sup /Xu” dv. @

VE(Pri,j)*‘I)(m)

The first term on the right-hand side of equation is agent (i,7)’s expected utility from truth-telling

and obedience. The second term on the right-hand side of equation is her maximal achievable utility
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over all possible deviations. The mechanism profile m is incentive compatible for agent (¢, ) if and only if

fi,j (m) Z 0

Continuity of Team j’s Correspondence of IC Mechanisms

We begin by establishing that each team j’s IC correspondence is continuous with respect to the robust
narrow metric dj; on mechanism profiles. We then turn to establishing that it is compact-valued and

convex-valued.

Lemma 2. The incentive compatibility slack f; ; : MY = R is continuous with respect to the robust narrow

metric dy,n -

Proof. The proof of Lemma [2] consists of two steps.

Step 1 (truthful-obedient utility): The first term in @, Jx wij du(m), is continuous in m because by
Definition the metric %,y metrizes the robust narrow topology so that m* — m implies p(m*) o,
p(m) (narrow convergence). Since u; ; is a bounded continuous function, it follows that [y u; ; du(m”) —
Jx wij dp(m).

Step 2 (unilateral-deviation wutility): For the second term in , by Definition m* — m implies
dp(®(m*), ®(m)) — 0 (Hausdorff convergence). Since X is compact Polish, the Hausdorff metric topology

coincides with the Fell topology (Beer, [1993, Corollary 5.1.11), and for compact subsets, convergence in the
Fell topology is equivalent to Kuratowski convergence (Beer and Rodriguez-Lépezl 2010]). This implies that
the correspondence m +—» m is both upper and lower hemicontinuous.

Since pr; ; : X — X is continuous, the pushforward map (pri )« : P(X) — P(X) is continuous and

preserves this hemicontinuity, so that

it ((pr; ;). (), (pr, ;). B(m)) = 0.

Since u;, j is bounded and continuous, the supremum functional sup €(pr, ;). B(m) [ wi,; dv is continuous with

respect to Hausdorff convergence. Therefore,

sup / u; j dv — sup / u; ;5 dv.
ve(pr; ;) ®(mF) /X vE(pr, ;)«®(m) /X
Note that this argument is essentially an application of the Maximum Theorem (Ok, [2007, Chapter E,
Section 3), which guarantees continuity of the maximum when the constraint correspondence is continuous
and the objective function is bounded and continuous. As established in footnote 24, the maximum exists
and equals the supremum due to compactness of W and continuity of the objective.
Since both terms in (7)) converge, it follows that f; ;(m*) — f; ;(m). Therefore f; ;(m) is continuous in

m, and that completes the proof. O

Next, note that team j’s correspondence of IC mechanisms is given by:
IC;(m_;) = {m; € M : f; j(m;,m_;) > 0 for all i in team j }.

Since IC; is defined by continuous functions (by Lemma [2) and weak inequalities, we have the following

result.
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Lemma 3. The correspondence 1C; : MN=1 — M is continuous with respect to the metric on MN"!

inherited from dy, -

Compact-valuedness of the IC correspondence.

We now turn to the compact-valuedness of the IC correspondence.

%

Lemma 4. For each m_; € MM~ the set IC;(m_;) C M is compact with respect to ;.
Lemma |4 follows from the fact that for each m_j;, the sublevel set
Si(m_j) = {m; € M : fij(m;,m_;) >0}
is closed in M by continuity of f; ;(-,m_;) (Lemma . Hence
IC;(m_;) = (] Si(m_)
i€team j

is an intersection of finitely many closed sets, thus closed in M. Since M is compact, every closed subset is

compact; therefore IC;(m_;) is compact.

Convex-valuedness of the IC correspondence.

Next, we turn to the convex-valuedness of the IC correspondence.
Lemma 5. For each m_; € MM~ the set IC;(m_;) C M is convexr.

To see this, fix m_; and suppose m;, m;- € IC;(m_j;). Forany X € [0, 1], interpret the convex combination
mj = Am; + (1 — A\)m/; as a mechanism that implements m; with probability A and m/ with probability
1 —A. Then

fiy(m") = Af; j(m) 4+ (1—=X)f;;(m’) >0

whenever both f; ;(m) > 0 and f; j(m’) > 0. This holds for all agents (i,7) in team j, confirming that
m;-’ € ICj(m_j).

Best-Response Correspondence

Given that each principal j’s objective function is continuous and quasi-concave and each IC} is continuous
and nonempty compact-valued, it follows from Berge’s Maximum Theorem (Aliprantis and Border} 2006,
Theorem 17.31) that each team j principal’s best-response correspondence is upper hemicontinuous with

compact convex values.

Theorem 2 (Berge’s Maximum Theorem). Let ¢ : X — Y be a continuous correspondence between
topological spaces X and Y with nonempty compact values. Let V : Gr(¢) — R be a continuous function,
where Gr(¢) = {(z,y) € X xY |y € ¢(x)} is the graph of the correspondence.

Define the value function m : X — R by:

m(z) = sup V(z,y),
yep(z)
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and the correspondence of mazimizers B : X — Y by:

Bla) ={y € ¢(z) | V(z,y) = m(z)}.
Then:
1. The value function m(x) is continuous on X.
2. The argmaz correspondence B(x) has nonempty compact values.
3. B(x) is conver-valued for all x € X if V(x,y) is quasi-concave in y and ¢(x) has convex values.
4. If Y is Hausdorff, then the argmaz correspondence (x) is upper hemicontinuous.

We can now apply Berge’s Maximum Theorem to establish properties of each team j principal’s best-
response correspondence. From Lemmas |3 and {4} the incentive-compatible correspondence IC; : M N-1
M is continuous with nonempty compact values. From Lemma [I} the principal’s payoff function Vi, is
continuous. Since M is Hausdorff, parts (1), (2), and (4) of Berge’s theorem imply that each team j
principal’s best-response correspondence is upper hemicontinuous with nonempty compact values. Moreover,
since ICj(m_;) is convex-valued (Lemma [5) and V;, is quasi-concave in m; (Lemma , part (3) implies
that the best-response correspondence also has convex values. Thus, the (aggregate) principals’ best-response

correspondence is upper hemicontinuous with nonempty compact convex values.

Existence of Bayes-Nash Principal’s Equilibrium

Lastly, we can apply the Kakutani-Fan-Glicksberg fixed-point theorem (Aliprantis and Border}, 2006, Theo-
rem 17.55) to the best-response correspondence to demonstrate the existence of a Bayesian-Nash Principals’

equilibrium.

Corollary 1. Let K be a nonempty compact convex subset of a locally convexr Hausdorff space, and let the
correspondence ¥ : K — K have a closed graph and nonempty convex values. Then, the set of fixed points

of W is compact and nonempty.

Given that each principal’s best-response correspondence is upper hemicontinuous with nonempty com-
pact convex values, the aggregate best-response correspondence satisfies the conditions of the Kakutani-Fan-

Glicksberg fixed-point theorem. Therefore, there exists a Bayesian-Nash Principals’ equilibrium.
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