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1 Introduction

Collective action requires coordination and often involves uncertainty. Besides

strategic uncertainty about other agents’ behavior, in many realistic situations

fundamental uncertainty exists regarding the value of taking collective action.

In many, or perhaps even most, of these environments the uncertain value

has a strong common value component that correlates individuals’ benefits

from public good provision. Examples range from global challenges for non-

excludable public goods such as climate change, to specific goals addressed in

thousands of crowdfunding campaigns that support civic objectives, includ-

ing those with excludable benefits that create art or develop new products.

Optimal decision making in such environments therefore requires agents to

recognize that others’ support for a common goal encodes a positive signal

about the value of collective action.

The temporal structure of collective decision making affects the nature,

and difficulty, of this signal extraction problem. When decision making is

simultaneous, agents’ expectations of the value of collective action must be

contingent on concurrent, unobservable, decisions of others. If decision making

is dynamic, expectations in early stages must condition on both concurrent

and future decisions of others, while in later stages expectations need only be

conditioned on others’ realized, observable, behavior.

We seek to understand better these types of inferential and contingent

reasoning (failures) by studying collective action across static and dynamic

environments. We report a laboratory experiment examining equilibrium pre-

dictions arising for fully rational agents who correctly condition on private and

public information, as well as boundedly rational agents who have difficulty

with inferential and contingent reasoning. We then estimate a novel struc-

tural model, decomposing failures of contingent reasoning into complexity and

awareness components, where complexity refers to challenges facing agents

who should extract useful information from the actual or hypothetical choices

of others, and awareness refers to their recognition that such information even

exists. The estimates suggest three key types of subjects are present in our
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data: A Nash type, who fully extracts information from both the concurrent

and prior behavior of others; a partially cursed Eyster-Rabin (2005) type who

extracts partial information from the behavior of others; and an Esponda-

Vespa (2014) type who extracts information only from others’ prior, and not

concurrent or future, behavior.

The study and implications of limited statistical reasoning by humans, and

particularly the failure to understand how others’ actions provide valuable in-

formation about their private information, began with early evidence of the

“winner’s curse” in common value auctions (Capen et al., 1971; Kagel and

Levin, 1986, 2002). Eyster and Rabin (2005) formalized this intuition, intro-

ducing the notion of “cursed equilibrium” and applying it to more general

environments. In a cursed equilibrium for common value auctions, bidders

best respond to incorrect beliefs that fail to account for how rival bidders’

bids depend on their signals (for a survey see Eyster (2019)).1

Although there is evidence of inferential reasoning failure with respect to

realized events (see Araujo et al. (2021) and Carillo and Palfrey (2009), for

examples), we are motivated by the stylized fact that reasoning about hypo-

thetical contingencies is especially difficult. Esponda and Vespa (2014) found

that subjects in their voting experiment were much better at drawing infer-

ences from actual previous decisions of others, available only in a sequential

setting, than hypothetical events needed to guide choices in a static setting.

In this paper we compare dynamic and static provision of excludable public

goods, with the overarching goal to provide more insight into the source of

difficulties people have with inferential and contingent reasoning. In contrast

to previous studies, however, in which the sequential ordering is enforced, the

agents choose the timing of their decisions in our dynamic environment, as

illustrated in Table 1. That is, in our public goods setting, any agent in the

1Robust evidence of this type of limited rationality arises in a range of environments, from
simplified nonstrategic settings such as the “Acquire a Company” problem (Bazerman and
Samuelson, 1983; Charness and Levin, 2009) to voting (Esponda and Vespa, 2014) and non-
auction market environments (Ngangoue and Weizsacker, 2021; Bochet and Siegenthaler,
2021; Carrillo and Palfrey, 2011; Magnani and Oprea, 2017). Few previous studies have
explored how limitations for contingent reasoning affect choices in a common value public
good setting (Cox, 2015).
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dynamic treatment can choose to contribute to the public good in the first

stage (T = 1) or may elect to delay the decision until a later stage (T = 2 or

3). Early stage commitments to the public good are revealed to others in the

group.2

Timing

T = 1 T = 2 T = 3

Static (simultaneous) P1, P2, P3

Dynamic P1, P2, P3 P1, P2, P3 P1, P2, P3

Table 1: Order of decision making under alternative timing structures, where
P1 denotes player 1, P2 denotes player 2 and P3 denotes player 3.

Here, we posit two possible sources for failures of contingent reasoning. One

possibility is that individuals simply fail to recognize that there is information

in others’ decisions that they could find useful for their own judgments and

belief updating; we refer to this type of naivete as unawareness. Alternatively,

individuals may be aware that information exists that could be extracted and

useful but they have difficulty doing so, particularly when reasoning must be

hypothetical. We call this complexity.

For unawareness to be a candidate for the differential of contingent rea-

soning between hypothetical and realized events, observation of an event must

trigger awareness.3 Thus, we allow for the arrival of information about oth-

ers’ behavior to trigger awareness of the information extraction problem. In

this sense, our notion of unawareness is a myopic unawareness whereby the

unaware individual lacks the foresight to attend to the potential future ar-

rival of information and, by construction, behaves myopically in the dynamic

treatment.

2Revealing prior commitments to the public good is analogous to the continuously up-
dated cumulative prior contributions made by others on crowdfunding sites such as Kick-
starter.

3For example, an individual who observes the prior behavior of others might ask them-
selves the question “why did a majority of others support this public good project? Do
they know something I do not?” The same individual might simply consider only private
information if choosing concurrently with others.
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On the other hand, complexity is characterized by the difficulty of ex-

tracting information from the behavior of others. The extraction problem

may be more complex when considering hypothetical events, and less complex

(but still present) when considering realized events. Our structural model in-

troduces two dimensions of complexity: one that captures the complexity of

reasoning about concurrent or future (i.e. hypothetical) events and one that

captures the residual complexity of reasoning about past (i.e. realized) events.

Failures of inferential reasoning can be partially explained by the additional

complexity of contingent thinking only when there is a divergence between

these two measures.

The dynamic structure of our experiment allows for a separation of the

unawareness and complexity explanations to better understand failures of con-

tingent reasoning. First, note that a comparison of the second stage (T = 2)

of the dynamic treatment with the static treatment is analogous to the com-

parison in the previous literature: information arrives before the second stage

begins, which both simplifies the choice problem and highlights the existence

of the information. Importantly, we can also compare behavior in the first

stage of the dynamic treatment with behavior in the static treatment. If the

complexity of contingent thinking is the source of inferential reasoning failures,

then subjects will often prefer to delay decision making to future stages where

the arrival of information will make the decision less complex.4 However, if un-

awareness is the source of inferential reasoning failures then subjects will not

recognize the value of waiting for information and will thus behave identically

across the static treatment and the first stage of the dynamic treatment.5

Our experiment also addresses new issues in information extraction and

4Alternative explanations for delaying are also possible, of course, such as herding–i.e.,
waiting to copy what others do. Our results show an under-reaction of subjects’ responses to
earlier choices by others on average, however, providing evidence against this explanation.

5As is standard in lab experiments, our subjects play the same game multiple times.
Thus, unawareness could diminish over time as subjects learn about the strategic environ-
ment. Our data exhibits only weak learning effects, however. This suggests that either
unawareness never existed among the population, or that providing an opportunity to over-
come unawareness is insufficient and so it could persist through multiple repetitions of the
game. Esponda and Vespa (2014) also document surprisingly weak learning across sequential
and simultaneous versions of their voting game. We return to this point in Section 6.
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contingent reasoning. In previous studies comparing simultaneous and sequen-

tial choices to explore contingent reasoning, the environments are isomorphic in

the sense that optimal choices and equilibrium outcomes do not vary when in-

troducing the sequential game form.6 This is not the case for our public goods

provision problem, which features a more complex signal space, greater payoff

uncertainty, and a richer dynamic structure.7 Agents have an option value

from deferring their decision about whether to contribute to the public good

whereas previous experiments with endogenous timing have mainly considered

strictly informational interactions, without payoff consequences (Ivanov et al.,

2009). The public good is, in equilibrium, provided less frequently in the dy-

namic than the static treatment, with a pronounced drop in provision when it

has a low common value and should not be provided.

Our results indicate that a large fraction of subjects appreciate the benefits

of deferring choice to learn about the contribution decisions of others when

their signals about the public good value are near the margin. They also

react to the information conveyed by others’ choices, and how others’ choice

to select the public good signals a higher common value. The bias away

from Nash equilibrium choices is in the direction of Cursed equilibrium on

average, particularly in the static treatment. Overall, however, public good

provision rates and errors in overprovision do not differ between the static and

dynamic treatments, contrary to the equilibrium prediction. That is, while

there is substantially less support for the public good in the first stage of the

dynamic treatment than the static treatment, the aggregate provision rate in

the dynamic treatment increases to static levels via additional contribution

opportunities in the later stages.

In order to parsimoniously summarize our complete data set, we propose

and estimate a simple structural model that decomposes a subject’s potential

6Esponda and Vespa (2021), for example, effectively change the framing of the decision
tasks on five classic problems, helping subjects focus on the set of states where their choice
matters.

7Multiple equilibria exist in all of our treatments, which also raises interesting new ques-
tions about behavioral equilibrium selection with contingent reasoning. Our empirical anal-
ysis focuses on symmetric equilibria in which the public good is provided with positive
probability.
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failures of inferential and contingent reasoning into three components: cursed-

ness when considering hypothetical events, cursedness when considering real-

ized events, and an awareness component. The reduction in cursedness when

moving from hypothetical to realized contingent thinking, for aware subjects,

provides a measure of the effects of the complexity of contingent thinking.

Using a clustering algorithm to classify subjects into groups we find that

71% of subjects exhibit awareness and perform equally well across hypothetical

and realized inferential reasoning, including a Nash cluster who perform well

in both cases and an Eyster-Rabin cluster who perform moderately in both

cases. That is, for a majority of our subjects, contingent reasoning is no

more difficult than inferential reasoning based on observed actions. Given

that these subjects do not exhibit major failures in contingent reasoning, we

do not identify either unawareness or complexity as causing their deviations

from optimal public good selection. A third cluster, comprising of 24% of

subjects, exhibits unawareness and the fingerprint of the results of Esponda

and Vespa (2014): performing poorly in the case of hypothetical contingent

reasoning but moderately well in the case of realized inferential reasoning. For

these subjects, the two conceptually distinct channels that might cause failures

of contingent reasoning, unawareness and complexity, are both present.

2 Myopic Unawareness and Cursed Beliefs

This section outlines a general model of binary choice games with private

information, within which we define our notions of cursedness with respect to

hypothetical events, cursedness with respect to realized events, and myopic

unawareness. We start by constructing a model for a static, one-shot, game

before extending the framework to a dynamic version of this game. Although

our experimental application of this framework is to binary contribution public

goods, the model is general enough to cover a wide range of binary action

games including market entry games, voting, bilateral trade games (including

markets for lemons), and coordination games with private information.

Consider a set of N players playing a binary action game, ai ∈ {0, 1}.
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Nature draws a state of the world, ω, and each player i ∈ N observes a signal

si that is partially informative about the value of ω.8 As is standard we write

a = ×i∈Nai to denote the vector of actions for all players. In general, the

payoff for each player is a function of the full action profile and the state of

the world, πi(ω, a) ∈ R.
For ease of exposition, we restrict attention to pure strategies. That

is, a strategy for player j is a function from signals to actions such that

rj(sj) ∈ {0, 1}. We assume that the ex-ante distribution of signals is com-

mon knowledge, so that E[sj] is also common knowledge. The conditional

expectations of player j’s signal, given by

E[sj|aj = 1] =

∫
sjrj(sj)dsj

and

E[sj|aj = 0] =

∫
sj[1− rj(sj)]dsj,

are not observable by other players. Instead, players other than j must form

beliefs about these conditional expectations. Denote the beliefs held by player

i as Bi[sj|aj = 1] and Bi[sj|aj = 0].

In a Nash equilibrium, it must be the case that Bi[sj|aj = 1] = E[sj|aj = 1]

given that player i will have a correct conjecture about player j’s strategy.

However, in general, these beliefs need not be correct nor be expectations in

the formal sense. Nevertheless, we impose some natural properties on the

belief functions.

We place a natural symmetry restriction on the relative error that a sub-

ject’s beliefs can hold

Bi[sj|aj = 1]− E[sj|aj = 1]

E[sj]− E[sj|aj = 1]
=
Bi[sj|aj = 0]− E[sj|aj = 0]

E[sj]− E[sj|aj = 0]

and, in addition, restrict belief errors to be symmetric across opponents

8We do not impose any structure on ω and si, to allow for a wider range of applications.
Two natural structures are to restrict each si ∈ [0, 1] with ω =

∑
n∈N sn, or to allow

si, ω ∈ R such that si = ω+ϵi for all i where ϵi is drawn from a standard normal distribution.
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Bi[sj|aj = 1]− E[sj|aj = 1]

E[sj]− E[sj|aj = 1]
=
Bi[sk|ak = 1]− E[sk|ak = 1]

E[sk]− E[sk|ak = 1]
.

Given these symmetry assumptions, we can summarize subject’s belief er-

rors by a single statistic, χH , defined as

χH =
Bi[sj|aj]− E[sj|aj]
E[sj]− E[sj|aj]

(1)

This definition of χH is consistent with the one-parameter Eyster-Rabin

notion of cursedness. In Eyster and Rabin (2005), cursedness is defined such

that Bi[sj|aj] = χE[sj] + (1 − χ)E[sj|aj]. Substituting this definition into

Equation 1 recovers χH = χ.

Next, we extend this framework to a model of dynamic decision making.

In principle, this type of extension can apply to any binary action game with

private information. Let there be T stages of decision making. In each stage

t ≤ T , agents select an action ati ∈ {0, 1} subject to the restriction that

ati ≥ at−1
i for all t ≥ 2. Agents observe private signals si at t = 0 and these

remain fixed for all t. Payoffs, πi(ω, a
T ) ∈ R, depend only on the state of the

world and stage T actions. The restriction ati ≥ at−1
i implies that if an agent

selects ati = 1 at any t then the agent must also play aTi = 1.

To extend our notion of cursedness into the dynamic setting, first define

Bt
i [sj|{a1j , . . . , akj}] to be the agent’s belief about the expectation of sj at time t

given the sequence of opponent actions up to time k. Then consider two cases.

In the first case, with t > k, the agent is forming a belief that is conditional

on observed (that is, realized) actions. In the second case, with t ≤ k, the

agent must also condition on actions that are hypothetical or not yet observed.

Thus, we define two different degrees of cursedness:

χR =
Bt

i [sj|{a1j , . . . , akj}]− E[sj|{a1j , . . . , akj}]
E[sj]− E[sj|{a1j , . . . , akj}]

for t > k (2)

and
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χH =
Bt

i [sj|{a1j , . . . , akj}]− E[sj|{a1j , . . . , akj}]
E[sj]− E[sj|{a1j , . . . , akj}]

for t ≤ k. (3)

χR is a measure of cursedness with respect to realized, or observable, ac-

tions and χH is a measure of cursedness when at least some actions are hy-

pothetical, or unobservable. Consistent with past experimental evidence, we

assume that χH ≥ χR. That is, inference with respect to realized actions is

no more difficult than inference with respect to hypothetical actions.9 As is

typically the case in models of partial cursedness, the parameters χR and χH

can be understood as an “as-if” model of some underlying cognitive processes

or behavioral heuristics.

The dynamic structure also allows for an operative definition of myopic

unawareness. Unawareness induced myopia arises from a lack of foresight re-

garding the future value of observing the actions of others, and we use the

term “myopic unawareness” to distinguish this notion from other uses of un-

awareness, including Dekel et al. (1998), in the literature. There are three

components underlying myopia within this structured environment. The first

is an unawareness that conditional beliefs about ω may become more accurate

when considering realized and observable rather than hypothetical actions;

i.e. a failure to recognize that, for a fixed sequence {a1j , . . . , akj}, the numer-

ator Bt
i [sj|{a1j , . . . , akj}] − E[sj|{a1j , . . . , akj}] will be weakly smaller for t > k

than for t ≤ k. The second component is an unawareness that arises because

a myopic agent may fail to consider the complete set of feasible sequences,

perhaps considering only some subset {a1j , . . . , ak
′

j } with k′ = t. Third, a my-

opic agent may be unaware of the option value of delaying commitment until a

later period, particularly when this option value is associated with the horizon

of feasible sequences expanding in later periods.

One way to operationalize this myopic unawareness is to enforce the belief

9Several studies have shown how decision-makers are better able to exhibit inferential
reasoning when information is not hypothetical, for example by providing information or
making choices sequential so that payoff consequences of each action are more transparent
(Esponda and Vespa, 2014, 2021; Levin et al., 2016; Ngangoue and Weizsacker, 2021) or by
reducing the underlying uncertainty in the environment (Martinez-Marquina et al., 2019;
Brocas and Carrillo, 2022).
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that actions, including the agent’s own action, will not be revised at any future

time points. Alternatively, myopic unawareness could simply reflect a lack of

imagination that agents (including oneself) would ever prefer to revise actions

in the future. We represent myopic unawareness via a binary variable, ψ, using

ψ = 1 for an agent who exhibits myopic unawareness and ψ = 0 for an agent

who does not.

This definition of myopic unawareness interacts with hypothetical cursed-

ness, χH , to produce a nuanced interpretation of contingent thinking. To

illustrate, consider the case where χH = 1 and χR = 0, which captures the

behavior of a majority of subjects in Esponda and Vespa (2014). In this case

an agent fully ignores any information that can be inferred from opponents’

concurrent or future choices, yet makes rational inferences from opponents’

past decisions.

When ψ = 1 the inability to conduct hypothetical inference is naturally

ascribed to the agents unawareness that there is an information extraction

problem to resolve. The act of observing an opponents’ action triggers an

awareness that the observation provides useful information, yet the agent re-

mains unaware that they may learn from opponents’ future actions. In this

case χH = 1 > χR = 0 because of the agent’s unawareness.

On the other hand, when ψ = 0, the agent is aware that concurrent actions

may reveal information once the action can be observed. That is, the agent

is fully aware of the hypothetical reasoning problem yet they cannot solve the

inference problem. Once the action is observed, then the complexity of the

inference problem is reduced, and the agent manages to solve it effectively.

That is, when ψ = 0, we have χH = 1 > χR = 0 because of complexity.

Note, however, that the interpretation of myopic unawareness is, subtly,

different when 1 > χH > χR. In this case, the agent is not fully unaware

of the information extraction problem (if they were, then it must be that

χH = 1). Here, the implication of ψ = 1 is to restrict the agent to myopic

decision making, whereby they ignore the possibility of inferring information in

future periods despite being aware of the possibility of such learning. The only

cluster of unaware subjects identified in the experiment has estimated χ̂H ∼
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1, however, so the first interpretation of unawareness receives the greatest

empirical support.

3 Experimental design and hypotheses

3.1 Environment

In order to focus on individuals’ possible difficulties with information extrac-

tion our design simplifies the public good provision problem, as in Cox (2015),

by making consumption of the public good (PG) excludable. Only individuals

who support provision of the PG may receive PG benefits, which eliminates

the usual free-rider problem and associated social preference concerns arising

from relative payoff comparisons. Previous experiments have shown that ex-

clusion of the lowest contributors (Croson et al., 2015), exclusion of individuals

who fail to meet minimum contribution thresholds (Swope, 2002), or excluding

those who do not pay a small “membership fee” (Bchir and Willinger, 2013)

usually raises total contributions.10 Although it may be more accurate to refer

to the good here as a club good, given its excludability, we follow convention

in the experimental literature and use the term public good.

Several previous experiments have considered uncertainty in social dilem-

mas, including uncertain returns to contribution.11,12 Our design features two

10Unlike our experiment, these previous studies of excludable PGs employed a private
value, complete information environment. Gailmard and Palfrey (2005) have incomplete
information (but still independent private values) and compare the performance of the serial
cost sharing mechanism, which achieves incentive compatibility through exclusion, to two
alternative mechanisms that do not employ exclusion and are not incentive compatible.

11Some of these studies find that contributions are lower with uncertain public returns
(Dickinson, 1998; Gangadharan and Nemes, 2009; Levati et al., 2009), while others do not
indicate contribution impacts of uncertainty, such as Stoddard (2017). Few studies have
considered uncertain returns to common-value public goods, other than Cox (2015). See Cox
and Stoddard (2021) for further discussion, and a static public goods provision experiment
with information sharing about public returns through (binary) cheap talk messages.

12Vesterlund (2003) also addresses the distinction between simultaneous and sequential
provision of public goods, also with uncertain returns. In Vesterlund’s model charities
are either good or bad (i.e. provide a valuable public good, or not), and the charity can
strategically decide whether to solicit donations simultaneously or sequentially. Quality is
unknown initially to potential donors, but it can be revealed by paying a fixed cost. In
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key stylistic departures from the standard paradigm of public goods contri-

bution games. First, we frame the decision as a binary choice between a PG

and a private good to ameliorate any status quo bias that might arise when

a subject is deciding whether to contribute, or not, to a PG from a private

endowment.13 Second, we introduce uncertainty in the value of the private

good in order to equate the ex-ante risk profile of the two options and thereby

avoid risk aversion biasing choice towards the private good.

More precisely, let us denote the agents by i ∈ {1, 2, 3}. The common

value of the PG is given by P = s1 + s2 + s3 where each si is an independent

draw from a uniform discrete distribution over the interval 0 to 100. Agent

i observes only signal si. The value of the private good, Vi, differs for each

agent, and is given by Vi = D0 +D1,i +D2,i, where D0 is exogenous, common,

and common knowledge across all three agents. The six other signals, Dj,i for

j ∈ {1, 2} and i ∈ {1, 2, 3}, are unobserved and are each independent draws –

also from a uniform discrete distribution over the interval 0 to 100. Therefore,

after observing their own signals, each agent knows that the value of the PG

is a known amount plus two iid draws from a uniform distribution, and that

the value of the private good is also a known amount plus two iid draws from

the same uniform distribution. This provides the same level of uncertainty for

both the private and public goods. In the notation of the previous section we

have ω = {P,D}, where P ∈ [0, 300] and D is a 2×3 matrix containing Dj,i for

j ∈ {1, 2} and i ∈ {1, 2, 3}. The values of each good are summarized in Table 2.

Note that contingent reasoning is not needed when forming expectations of the

private good value, since these expectations are independent of any behavior.

A subject receives the PG if they and at least one other subject select the

PG, and otherwise receives the private good. In the notation of the previous

this framework, in the semi-separating equilibrium, high type charities are strictly better
off with sequential donations.

13Cox (2015) also frames the decision choice as a binary one.
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Player 1 Player 2 Player 3

Value of Public Good s1 + s2 + s3 s1 + s2 + s3 s1 + s2 + s3

Value of Private Good D0 +D1,1 +D2,1 D0 +D1,2 +D2,2 D0 +D1,3 +D2,3

Table 2: A summary of the value of the Public and Private goods for each
player. Values in red are observable, and values in black are unobservable.

section,

πi =

s1 + s2 + s3, if ai = 1 and
∑3

k=1 ak ≥ 2

D0 +D1,i +D2,i, if ai = 0 or
∑3

k=1 ak ≤ 1
.

In the static treatment, all three subjects make decisions simultaneously.

In the dynamic treatment decision making occurs in three stages, with simul-

taneous decisions within each stage. In the first stage, each agent has the

option to select either the PG or private good. If an agent selects the PG, the

decision is final and is revealed to others in the group. If an agent selects the

private good in stage one, in stage two they observe how many other group

members selected the PG in stage one. In this second stage they may switch to

select the PG or continue to choose the private good. Agents who selected the

private good in both stages one and two observe the number of PG decisions

made by others in stages one and two and then, for the third and final time,

they can select either the PG or private good. The environment is deliberately

simplified, as agents have only a single binary choice (whether or not to select

the PG) each stage. This simplicity limits potential subject confusion.

3.2 Equilibrium and hypotheses

Multiple equilibria exist in all of our treatments. For example, given the re-

quirement that at least two agents must select the PG for it to be provided,

it is always an equilibrium for no agent to select the PG.14 We focus on (sym-

14Previous research has identified conditions in which this type of inefficient equilibrium
is not trembling hand perfect in private value environments (Bagnoli and Lipman, 1989).
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metric) equilibria in which the PG is provided with positive probability.

Appendix A presents details for the static and dynamic treatment equilibria

for the experimental environment. Here we provide a short intuitive summary.

Given the symmetric distribution of signals, a subject who chooses the private

good will earn in expectation E[Vi] = E[D0 + D1,i + D2,i] = D0 + 100. A

subject i who ignores selection effects and chooses the PG would expect to

earn E[P ] = E[s1+ s2+ s3] = si+100, because they ignore the fact that other

agents choice of the PG is good news indicating the PG has higher value. This

comparison between the private good and PG naive expected value suggests

the simple but incorrect decision rule of selecting the PG if and only if si ≥ D0.

This is exactly the decision rule implied by fully cursed equilibrium (Eyster

and Rabin, 2005), in which every agent makes an optimal decision under the

erroneous assumption that other players decisions are not conditioned on their

private information.

Given that the expected value of the PG is strictly increasing in player i’s

signal si, while the value of the private good is independent of si, it is always

optimal for a subject to use a cutoff rule, selecting the PG only for signals

above some threshold. Whenever this cutoff point is positive, the PG choice

of other agents is informative of their private signal, and this changes the

expected value of the PG. If the equilibrium cutoff is X, for example, then an

outside observer expects that the average signal for agents who select the PG

is (X + 100)/2. This exceeds the unconditional expected value of 50 for any

X > 0. Consequently, when an agent’s PG choice is pivotal (because at least

one other agent also chose the PG) it has an expected value that exceeds the

unconditional average. Agents should therefore choose the PG more frequently

when they account for this selection. In other words, the selection effect lowers

the threshold cutoff value for choosing the PG.

We show in Section A.1, for the static treatment, how much lower these

Nash equilibrium cutoffs are than the cursed equilibrium cutoffs for any D0 >

0. As shown in Table 3 for the three values of D0 used in the experiment,

the PG is chosen weakly more often when agents correctly condition on the

“good news” that they are more likely to be pivotal when other agents have
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high signals and also opt for the PG.

Calculations are more complex for the dynamic treatment, because knowl-

edge that other agents did or did not choose the PG in previous stages affects

the estimates of the PG value. Section A.2 provides derivations for the equi-

librium using backward induction, where agents with sufficiently high signals

select the PG in early stages rather than delaying.15 Two forces determine

the first stage cutoff value. First, there is an option value from deferring a

decision to select the PG: the longer I wait, the more I can infer about the

private signals of others. The option value of waiting pushes the first stage

cutoff value higher in the dynamic treatment, relative to the static treatment.

Second, there is a signaling effect: if I have a good signal I wish to com-

municate this to others, and induce their PG choice, by selecting the PG as

soon as possible. The signaling effect increases the value of selecting the PG

immediately for high private signals (as this will encourage others and increase

the chances that the PG is provisioned), but it decreases the value of selecting

the PG immediately for low private signals (as encouraging others’ PG choice

in this case can lead to inefficient provisioning of the PG).

Understanding the option value of waiting requires a subject to recognize

that there is information that can be extracted, in the future, from current

decisions of other players. In contrast to equilibrium reasoning in the simul-

taneous treatment, the extraction of this information in the second stage does

not require hypothetical thinking. On the other hand, the signaling effect re-

quires hypothetical thinking about the future behavior of other players, but

does not require an ability to extract information from a signal.

In general, as illustrated in Table 3, cutoffs decline as more group members

choose the PG in earlier stages. Due to the greater information dissemination

from the sequential PG decisions, in the no-delay equilibrium players choose

the PG more often in the rounds where it is efficient to do so in the dynamic

treatment relative to the static treatment. Of course, these predictions are

15Although equilibria exist with delay, they lead to lower expected payoffs and our ex-
perimental data provide no evidence consistent with them. Further, although the game is
formally a Bayesian game, it is easily established that every optimal strategy is a simple
cutoff strategy and, given this, that the game can be solved via backwards induction.
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Private good base value (D0): 0 30 70

Cursed equilibrium cutoff 0 30 70

Static equilibrium cutoff 0 25.0 52.1

Dynamic equilibrium cutoffs:

Stage 1 47.7 58.9 73.0

Stage 2 (One prior PG choice) 17.5 33.7 55.7

Stage 3 (One prior PG choice in each stage) 0 4.3 19.2

Stage 2 (Two prior PG choices) 0 0 0

Public Good frequency:

Cursed equilibrium 1.00 0.784 0.216

Static equilibrium 1.00 0.844 0.468

Dynamic equilibrium 0.844 0.656 0.360

Loss frequency (PG value < private good value):

Cursed equilibrium 0.189 0.181 0.034

Static equilibrium 0.189 0.225 0.154

Dynamic equilibrium 0.073 0.088 0.080

Table 3: Top panel: Equilibrium cutoffs. Middle panel: Frequency of public
good provision. Bottom panel: Probability that PG is provisioned and total
utility is lower than if PG was not provisioned.

based on common knowledge of full rationality.

In addition to the equilibrium cutoffs for the static and dynamic treat-

ments, Table 3 also summarizes the likelihood of the PG being provisioned

in the static Nash, dynamic Nash and cursed equilibrium, and expected fre-

quency of inefficient PG choices (due to lower earnings than the private good)

based on the uniform distribution of signal draws. These treatment differences

lead to the following hypotheses.

Hypothesis 1: (a) Subjects choose the PG with lower frequency in stage 1 of

the dynamic treatment than in the static treatment; and (b) estimated signal

cutoffs for choosing the PG are higher in stage 1 of the dynamic treatment
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than in the static treatment.

Hypothesis 2: (a) Subjects choose the PG at higher rates in later stages of

the dynamic treatment if more other agents have previously selected the PG;

and (b) estimated signal cutoffs in the dynamic treatment decrease for later

stages when more other agents previously selected the PG.

Hypothesis 3: (Outcomes) (a) The PG is chosen more frequently in the static

than the dynamic treatment; and (b) the PG is chosen when it has a lower

value than the private good more frequently in the static than the dynamic

treatment.

The final hypothesis is based on cursed rather than static and dynamic

Nash equilibrium.

Hypothesis 4: (cursed equilibrium) Estimated PG choice signal cutoffs cor-

respond to the private good base value (D0) for both the static and dynamic

treatments.

Note that in hypotheses 1 and 2 part (a) is closely related to part (b) in the

sense that, assuming subjects are using cutoff strategies, part (a) holds if and

only if part (b) holds in the limit as the number of observations per subject

increases. We test both parts, however, as a robustness check on our results.

3.3 Laboratory procedures

The experimental design varied the common, baseline value of the private

good at three levels, D0 ∈ {0, 30, 70}, and whether the binary PG choice was

static or dynamic. The three D0 values allow for a wide range of equilibrium

cutoffs and PG choice frequency to identify types of reasoning failures and their

implications for efficiency (cf Table 3). The D0 value varied between subjects,

as it was kept constant throughout each experimental session. The static

and dynamic treatments were varied within subject: each session included 20

consecutive rounds of the static treatment and 40 consecutive rounds of the

dynamic treatment; the ordering was varied so exactly one half of the sessions

in each D0 treatment began with the dynamic treatment and one half began

with the static treatment. Independent signals si and Dj,i were drawn each
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round. We conducted twice as many rounds for the dynamic treatment in order

to obtain a greater number of observations for stage two and three decisions

in different subgames (0, 1 or 2 earlier PG choices by others).16 At the end

of each round, subjects learned the signals received by all 3 members of their

group, as well as all 3 components of their private project value. They also

learned the number of other subjects in their group who chose the PG, but

not the specific signals received by those who did or did not choose the PG.

We collected data from a total of 144 subjects, with 48 subjects in each D0

treatment. Subjects were randomly reassigned to new groups of 3 each round,

out of matching groups of size 12, so each treatment included 4 independent

observations. The subjects were all undergraduate students at Purdue Univer-

sity, recruited from a database of approximately 3,000 volunteers drawn across

a wide range of academic disciplines and randomly allocated to treatment con-

ditions using ORSEE (Greiner, 2015). The experiment was implemented using

oTree (Chen et al., 2016). We used neutral framing, referring to choices be-

tween the “Group Project” or the “Private Project.” Details are provided in

the instructions given to subjects (see Online Appendix D).

These written instructions were read aloud at the start of the session by an

experimenter, after distributing a hardcopy to subjects. New complete instruc-

tions were distributed at the treatment switch (from simultanous to dynamic

or vice versa), but only the changes were highlighted and read aloud. Each

session concluded with two short “acquiring-a-company” game choices (both

paid) for a separate measure of subjects’ contingent reasoning. Sessions lasted

about 1 hour each, including instructions and payment time. At the conclusion

of each session earnings were paid privately in cash for one randomly-drawn

round for the main PG provision task. Subjects earned $26.69 on average per

person, with an interquartile range of [$21.68, $28.21].

16Conducting the dynamic treatment using the strategy method was not an option given
our research objective to study contingent reasoning. We did not employ the strategy
method in the static treatment either as this could make the use of signal contingent strate-
gies more salient for subjects and, therefore, might also affect contingent thinking.
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4 Results

4.1 Public Good Choices and Provision

Hypothesis 1(a) states that agents should choose the PG with lower frequency

in stage 1 of the dynamic treatment than in the static treatment. Figure 1

summarizes these individual choices for different PG value signals, providing

support for this prediction for all three D0 treatments. The figure also shows

that subjects choose the PG more frequently for the treatments with a lower

base value (D0), and they choose the PG with low si signals at substantial rates

only for the lowest D0 = 0. Aggregate PG choices do not, however, exhibit

the sharp shift at equilibrium threshold signal levels (indicated on the figure

as vertical lines). We consider individual threshold strategies in Section 4.3.

For signal values below the static Nash equilibrium threshold the predic-

tions coincide for both the static and stage 1 dynamic treatments. Similarly,

for signal values above the stage 1 dynamic Nash equilibrium threshold, the

predictions also coincide for both treatments. Therefore, we should expect to

see treatment differences only between these signal ranges. Figure 1 demon-

strates that this is indeed the case, as the treatment differences are substantial

for signals that fall between the two equilibrium cutoffs, denoted by vertical

red lines, for all three values of D0. Differences in PG choice frequencies for

the static and dynamic treatments in these key signal ranges are highly sta-

tistically significant, based on linear probability models with standard errors

clustered on individual subjects, controlling for time trends and treatment

ordering. (Estimated p− values < 0.01 for all comparisons.)

Result 1. Subjects choose the PG more frequently in the static treatment than

in stage 1 of the dynamic treatment (support for Hypothesis 1(a)).

Hypothesis 2(a) concerns later stage choices in the dynamic treatment–

that agents will choose the PG at higher rates in later stages of the dynamic

treatment when more agents in their group previously selected the PG. Table

4 reports linear probability models of subjects’ choice of the PG in the second

stage, conditional on the number of others in the group who selected the PG in
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Figure 1: PG Choice Frequency by Signal, Static and Stage 1 Dynamic Treat-
ments. Vertical lines denote Nash equilibrium predicted cutoffs, with the left
(right) line corresponding to the static (dynamic) equilibrium.

the first stage. The omitted case is for zero other group members selecting the

PG in the first stage. The models include the subject’s own received signal

(si) to control for the nonrandom selection (lower signal draws) of subjects

who reach the later stages without having previously committed to the PG.

They also control for a time trend and treatment ordering.

The odd numbered columns report estimates without additional controls,

while the even numbered columns add demographic characteristics as well as

responses on the “acquiring-a-company” questions asked of subjects at the end

of their session.17 Results are similar with and without these controls.

The regression results show that having two rather than just one other

subject choosing the PG previously has a particularly strong impact on the

stage 2 PG decisions.18 For all six models the coefficient on two previous

17We employ multiple elicitations of this separate measure of individuals’ comprehension
of contingent reasoning and apply the obviously related instrumental variables method of
Gillen et al. (2019) to attenuate measurement error.

18It is possible that this result could be driven by some alternative behavioral effects,
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PG choices is significantly greater than for one previous PG choice (all p-

values< 0.001). Subjects with higher signals are also significantly more likely

to choose the PG in stage 2.19 To summarize:

Result 2. Subjects choose the PG at higher rates in later stages of the dy-

namic treatment if more members of their group have previously chosen the

PG, particularly for two previous PG choices (support for Hypothesis 2(a))

Hypothesis 3 concerns the overall provision rate for the PG, an outcome

that depends on the decisions of multiple agents given that at least two people

must select the PG for it to be provided. Table 6 in Appendix C displays the

rate of PG provision by both treatment type (dynamic or static) and the value

of D0. Hypothesis 3(a), that the PG is provided at a higher rate in the static

than the dynamic treatment, is rejected by the data. The PG provision rate

is actually higher in the dynamic than the static treatment for the D0 = 30

and D0 = 70 treatments.20 The downward bias in the static treatment for

the PG provision rate is in the direction of the cursed equilibrium for D0 > 0,

particularly for D0 = 70.

Hypothesis 3(b) concerns errors in PG provision, in particular the provision

of the PG to agents in rounds where the private good would have generated

a higher payoff. Table 6 in Appendix C shows that over-provision rates in

the static treatment are lower than predicted, and over-provision rates in the

dynamic treatment are higher than predicted. Differences between static and

dynamic treatment error rates are not statistically significant in the D0 = 0

and 30 treatments, but for the D0 = 70 treatment the over-provision errors

such as a reduction in uncertainty about the value of the PG or a fear of missing out on
the PG. Nevertheless, these behavioral effects operate through the same basic mechanism
as the “rational” response: observing someone else selecting the PG makes a subject believe
the PG is more valuable.

19Similar results obtain for stage 3 decisions, although we do not include them in Table 4
because the number of observations is lower and so the statistical significance is weaker, and
the selection effect of nonrandom, low signal choices in the third stage is much stronger.

20We establish this using a linear probability model with clustered standard errors, con-
trolling for time trends and treatment ordering. The differences between the static and
dynamic treatment are significant at the 1-percent level for both the D0 = 30 and 70 treat-
ments, considering only the comparable first 20 periods of each treatment or all periods.

22



Stage 2 PG for D0 = 0 Stage 2 PG for D0 = 30 Stage 2 PG for D0 = 70
(1) (2) (3) (4) (5) (6)

One other pre- 0.083 0.054 0.063 0.064 0.135 0.134
vious PG choice (0.044) (0.114) (0.034) (0.032) (0.021) (0.020)

Two other prev- 0.614 0.603 0.549 0.559 0.609 0.602
vious PG choices (0.057) (0.096) (0.045) (0.044) (0.054) (0.053)

Own signal (si) 0.0045 0.0049 0.0076 0.0075 0.0062 0.00611
(0.0011) (0.0018) (0.0016) (0.0014) (0.0007) (0.0007)

Round number t 0.0022 0.0020 0.0006 0.0009 -0.0001 -0.0002
in treatment (0.0016) (0.0023) (0.0011) (0.0011) (0.0007) (0.0007)

Treatment order 0.0025 0.0607 -0.0359 -0.0692 -0.0158 -0.0111
in session (0.0653) (0.1980) (0.0426) (0.0329) (0.0238) (0.0243)

Demographic and No Yes No Yes No Yes
ATC game controls

N 604 604 968 968 1439 1439
adj. R2 0.347 0.343 0.334

Standard errors (clustered on individual subjects) in parentheses.

Table 4: Stage 2 Public Good Choices in Dynamic Treatment.

are significantly greater in the dynamic than static treatment.21 Thus, the

symmetric Nash equilibrium does not accurately predict the rates of provision

and over-provision of the PG in aggregate.

Result 3. The PG provision rate in the dynamic treatment is greater than or

equal to the rate in the static treatment, and the over-provision (error rate) is

not lower in the dynamic treatment (Hypothesis 3 is not supported).

Overall, the Nash equilibrium provides a useful approximation for aggre-

21This conclusion is based on the same type of regression summarized in the previous
footnote. Differences are significant at the two-percent level for D0 = 70 regardless of
whether all periods or only the first 20 periods are compared.
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gate PG provision rates in the dynamic treatment but not for the static envi-

ronment. Nevertheless, aggregated outcomes may mask the choice of strategies

at the individual level. In particular, the strategy choices of subjects may help

explain the bias away from Nash outcomes, and towards outcomes predicted

by Cursed equilibrium, in the static treatment. Thus, we now turn to a study

of the strategies used by subjects in both our static and dynamic treatments.

4.2 Estimating strategies: Cutoff Intervals

Recall that a rational agent will use a cutoff rule in all scenarios: if the agent

observes a signal si for the PG that is above some threshold the agent will

prefer the PG and otherwise prefers the private good. Therefore, we summarize

each subject’s strategy with four points xS, xD, x1 and x2. xS denotes the cutoff

in the static treatment, xD denotes the cutoff in the first round of the dynamic

treatment, x1 denotes the cutoff in the dynamic treatment when observing

that one other player has already committed to the PG, and x2 denotes the

cutoff in the dynamic treatment when observing that both other players have

committed to the PG.22

The subjects’ binary choice data do not reveal their cutoff points directly.

We therefore infer their cutoffs using a deterministic process that provides in-

terval identification of each cutoff point. Our procedure is maximally efficient:

assuming a subject is using a cutoff rule, conditional on the observed data, we

identify the smallest possible interval that contains the cutoff point. The pro-

cedure is as follows. Order the k signals observed by the subject from smallest

to largest, labeled s1 through sk, and denote the ordered set by S. The data

are summarized by the mapping d : S → {0, 1}k where dj(S) = 1 indicates

that the subject selected the PG when signal sj was observed, and dj(S) = 0

indicates that the subject selected the private good.23 Next, identify the set

22Theory suggests that subjects might use a different cutoff in the cases where both other
players are observed to commit to the PG in the first stage, and where one player commits
in the first stage and another player commits in the second stage (cf Table 3). We do not
have enough observations per subject to observe stage 3 cutoffs reliably in the data, so we
instead focus only stage 2 decisions. This does not affect Hypothesis 2.

23Where dj(S) denotes the j-th element of the k-dimensional vector d(S).
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of k + 1 possible intervals I = {I0 = [0, s1], I1 = [s1, s2], . . . , Ik = [sk, 100]}.
Then, for each interval, calculate an error index E(Ij) for j ∈ [0, k] as follows:

E(Ij) =


∑k

i=j+1 1− di(S) if j = 0∑j
i=1 di(S) +

∑k
i=j+1 1− di(S) if 1 ≤ j < k∑k

i=1 di(S) if j = k

Essentially, this error index considers every possible interval (defined by the

signals a subject actually observes) and counts the number of choices inconsis-

tent with the subject using a cutoff within that interval. If argminj∈[0,k]E(I
j)

is unique, then we conclude that the cutoff point must lie in Ij. If argminj∈[0,k]E(I
j)

is not unique, then we conclude that the cutoff point must lie in the interval

[sj, sj+1] where j and j are the smallest and largest minimizers, and we adopt

the convention that s0 = 0 and sk+1 = 100.

Finally, we adjust the observed intervals in the dynamic treatment to be

consistent with an intuitive monotonicity condition: the cutoff at which a

subject selects the PG should be non-increasing across stages of the dynamic

treatment.24 In some cases, subject behavior is not compatible with mono-

tonicity. This usually occurs for subjects who have a high error index, sug-

gesting that these subjects are not playing a cutoff strategy in the first place.

On aggregate, however, subjects do appear to be implementing cutoff rules.25

In Section 4.3 (only) we exclude 23 subjects who violate the monotonicity

conditions. For the structural model in Section 5 we return to using the

entire sample, given that the error structure of the structural model is better

equipped to handle non-monotonic choices.

24For example, a subject who uses the same cutoff point in all stages of the dynamic
treatment is never observed to select the PG in the second or third stages (implying that
the upper bound of the interval is 100). We account for this by restricting the upper bound
of the interval for x1 and x2 to be no greater than the upper bound for xD.

25For xS , with 20 observations per subject, the median error index is 0.5. For xD, with
40 observations per subject, the median error index is 2. For x1 and x2, with averages of 9.1
and 5.0 observations per subject, respectively, the median error indices are both 0. These
low error indices provide evidence for consistency and against confusion among subjects.
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4.3 Analysis of strategies

We use interval regression techniques to estimate average cutoff strategies for

the various stages and scenarios. The true, unobserved, cutoffs for each sub-

ject in each scenario are modeled as a normally distributed latent variable.

The interval regression estimates maximize the likelihood that the unobserved

cutoffs lie within the intervals calculated above.

Once again we estimate our model both with and without demographic con-

trols, including performance in the acquire a company game. Table 5 presents

the average predicted cutoff value for each D0 scenario. The average cutoff in

the first stage of the dynamic treatment is greater than the average cutoff in

the static treatment, and also greater than the cutoff in the dynamic treatment

after others are observed to select the PG. These differences are significant at

p < 0.001, except for the D0 = 0 dynamic treatment with one other selecting

the PG where the difference is not significant.

Result 4. Estimated signal cutoffs for choosing the PG are higher in stage 1

of the dynamic treatment than in the static treatment (support for Hypothesis

1(b)) and estimated signal cutoffs decrease for later stages in the dynamic

treatment when more other agents in the group choose the PG (support for

Hypothesis 2(b)).

The largest deviations from the Nash equilibrium point predictions occur

in the dynamic treatment when both opponents have already chosen the PG.

The NE predicts that the PG should always be selected in this case, i.e., a

cutoff of 0, but Table 5 shows that the estimated cutoffs are substantially larger

than 0 in all treatments (p < 0.001 for all cases.) Subjects under-react to the

information encoded in observing both opponents selecting the PG. Given the

estimated first stage behavior, the best response cutoff is also 0 for all three

values of D0.
26

Subjects are closer to best responding to the information encoded in ob-

serving only one opponent choose the PG, although there is still under-reaction

26Best responses are calculated using Equation 5 in Appendix A, using χR = 0 and
replacing p∗0 with the average cutoff strategies estimated for first stage behavior.
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D0 = 0 D0 = 30 D0 = 70

(1) (2) (3) (4) (5) (6)

Static 15.39 15.28 26.78 26.80 59.30 59.27

(2.598) (2.718) (2.070) (1.991) (1.482) (1.493)

Dynamic 29.12 29.11 53.95 53.96 77.41 77.37

(Stage 1) (3.293) (3.180) (2.662) (2.660) (1.781) (1.780)

Dynamic 27.79 27.79 43.64 43.66 61.40 61.39

(One previous PG choice) (3.223) (3.143) (2.243) (2.192) (1.811) (1.784)

Dynamic 10.56 10.55 16.62 16.36 35.00 34.66

(Two previous PG choices) (2.094) (2.114) (1.994) (1.825) (4.271) (3.946)

Treatment order controls Yes Yes Yes Yes Yes Yes
Demographic and No Yes No Yes No Yes
ATC game controls

N 144 144 168 168 172 172

Standard errors in parentheses, clustered at the subject level in parentheses.

Table 5: Average predicted cutoff value by treatment and number of observed
PG choices, calculated via interval regression. Restricted to subjects who do
not violate the monotonicity constraints.

in the D0 = 30 and 70 treatments. We calculate the best response cutoff after

observing one selection of the PG to be 24, 35 and 54 in the D0 = 0, 30 and 70

treatments, respectively. From Table 5 the estimated values of these cutoffs

are 28, 44 and 61, respectively.27

Figure 2 plots the estimated cutoff values along with equilibrium predic-

tions. Nash equilibrium predicts the direction of treatment effects across vari-

27p = 0.228, p < 0.001 and p < 0.001, respectively, for tests comparing the estimated
cutoffs to these best responses. Best responses are calculated using Equation 6, assuming
χR = χH = 0 and replacing p∗0 with the average cutoff strategies estimated for first stage
behavior.
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Figure 2: Estimated cutoff values with 95% confidence intervals, controlling for demo-
graphic characteristics. Cursed equilibrium prediction denoted by dashed red lines, and
Nash equilibrium predictions denoted by solid green lines.

ation in both D0 and the timing of the game. As a point prediction Cursed

equilibrium does not perform well in our data, and Hypothesis 4 is rejected

in 11 out of 12 cases. However, Cursed equilibrium does help to organize our

data in the static treatment, where deviations from Nash equilibrium are in

the direction of Cursed equilibrium (whenever the Nash and Cursed equilib-

rium differ). In the case of D0 = 30, the 95% confidence interval of the average

cutoff value covers both the Cursed equilibrium and the Nash equilibrium. In

the dynamic treatment, the Nash equilibrium point predictions perform well

in the first stage, across the D0 = 30 and D0 = 70 treatments, but not oth-

erwise. Average cutoff values in the second stage of the dynamic treatment

lie between the Cursed and Nash equilibrium point predictions when D0 is

non-zero in three of four cases.

Figure 8 in Appendix C plots the CDF of the midpoint of the cutoff inter-

vals for individual subjects in the static treatment and the first stage of the

dynamic treatment. This indicates a substantial amount of within treatment
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heterogeneity across subjects. In order to better understand the source of this

heterogeneity, we next turn to estimation of a structural model that clusters

subjects based on their belief updating biases.

5 Structural model overview and estimation

5.1 Overview

The structural model is an application of the general framework described in

Section 2 and extends the model of cursed thinking that underlies the Cursed

Equilibrium of Eyster and Rabin (2005). Appendix A provides technical de-

tails of the model, which operationalizes the three parameters, introduced in

Section 2, that capture different aspects of potential belief updating failures.

χH captures a subject’s cursedness when considering hypothetical events or,

equivalently, when extracting information from the concurrent or future deci-

sions of others. χR captures a subject’s cursedness when considering realized

events or, equivalently, when extracting information from the past decisions

of others, with the restriction that χH ≥ χR. The third parameter is a binary

variable, ψ, that captures the (un)awareness of a subject.28

The myopic unawareness parameter, ψ, is primarily identified by a compar-

ison between behavior in the static and dynamic treatments: a key prediction

of the model is that first stage behavior in the dynamic treatment should be

the same as behavior in the static treatment when ψ = 1.29 The χR parameter

is, naturally, estimated using behavior in the second and third stages of the

dynamic treatment given that these are the only stages where a subject can

observe the realized actions of others. The χH parameter is estimated using

28Although we do not pursue it here, our structural model could be interpreted as a model
of attention (Gabaix, 2014). In this interpretation, the structural parameters χH and χR

dictate how much attention a subject focuses on a particular event. On the other hand, the
parameter ψ indicates which events the subject focuses attention on.

29ψ also affects, to a lesser extent, expected behavior in the second stage of the dynamic
treatment when a subject observes exactly one other player selecting the PG in stage one.
In this case a subject with ψ = 0 will correctly condition their stage two action on the
remaining opponent not selecting the PG in stage two, while a subject with ψ = 1 will not
make this inference.
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behavior from the static treatment, the first stage of the dynamic treatment,

and the second stage of the dynamic treatment (in the case where exactly one

opponent selects the PG in the first stage).

To illustrate for the context of our public goods game, suppose that an

agent in the static treatment believes that each opponent will select the public

good with probability p and, for ease of exposition, we approximate the discrete

signal space of our experiment with a continuous signal space on the interval

[0, 1]. The opponents use a cutoff strategy, such that they select the public

good for signals s ≥ (1−p) and select the private good for signals s < (1−p). If
the agent is Bayesian (χH = 0) then the agent believes the expected value of an

opponents signal, conditional on the opponent selecting the public and private

goods, respectively, to be E[sj|PG] = 1− p
2
and E[sj|RG] = 1−p

2
.30 In contrast,

a fully cursed agent (χH = 1) holds beliefs such that E[sj|PG] = E[sj|RG] = 1
2
.

The general case, for 0 ≤ χH ≤ 1 is then given by E[sj|PG] = 1− p
2
− χH

1−p
2

and E[sj|RG] = 1−p
2

+ χH
p
2
.

Figure 3 displays the parameter space of the model, and demonstrates how

it nests key models of conditional thinking from the literature. The right

panel represents unaware agents with ψ = 1, and the left panel agents with

ψ = 0. In each panel, χH is displayed on the horizontal axis and χR on the

vertical axis. A Nash subject, who always correctly applies Bayesian updating,

is represented in the bottom left corner of the left hand panel. Subjects who

conform to the Eyster and Rabin (2005) model lie along the χR = χH diagonal

in the left panel, with fully cursed subjects at the top right of the panel at

χR = χH = 1.31 Subjects in the bottom right corner of each panel behave

consistent with Esponda and Vespa (2014): fully cursed in the static treatment,

but not cursed in the later stages of the dynamic treatment.32

30We use the notation E[sj |X] to denote the expectation of agent j’s signal, conditional
on agent j selecting X, where X = PG denotes selecting the Public Good and X = RG
denotes selecting the pRivate Good.

31When χR = χH = 1, the ψ parameter has no effect on behavior. Intuitively, if a subject
ignores all potential correlation of others actions and their possible information, and never
updates initial beliefs, then it does not matter whether the subject is aware of the future
arrival of information as the subject will not use the information.

32A subject at χH = 1, χR = 0 and ψ = 1 will be distinguished from a subject at
χH = 1, χR = 0 and ψ = 0 in the first stage of the dynamic treatment, but the framework

30



0 0.5 1

H

0

0.5

1

R

=0

0 0.5 1

H

0

0.5

1

R

=1

Nash

Eyster-Rabin

Fully CursedFully Cursed

Esponda-VespaEsponda-Vespa

Figure 3: The parameter space of the structural model. The right panel
represents unaware agents with ψ = 1, and the left panel agents with ψ = 0.
The model resides in the triangles below the 45-degree line in each panel.

The intuition underlying the structural model is readily apparent in the fig-

ure. The complexity cost of hypothetical reasoning can be represented by the

relative weights placed on cursed beliefs for hypothetical and realized events,

measured by the difference χH − χR. In the diagram, this is captured by the

vertical distance between any given point and the dashed 45-degree line. A

subject who exhibits unawareness (right panel) ignores the future when mak-

ing any decision, while one who is aware (left panel) allows the shadow of the

future to affect current decisions.

There are three distinct stages to the model estimation. First, the theoret-

ical model generates an equilibrium mapping from the three preference param-

eters χH , χR and ψ to a five dimensional strategy profile (yS, y0, y1, y2, y1,1).

yS denotes the cutoff for the static treatment, y0 the cutoff for the first stage of

the dynamic treatment (i.e. after observing 0 other players select the PG), y1

and y2 the second stage cutoffs after observing 1 or 2 other players select the

PG in the first stage, and y1,1 the third stage cutoff after observing one other

player select the PG in each of the first two stages. We restrict attention to

symmetric equilibria to ensure a unique mapping from preference parameters

to strategies. Formally, our symmetry assumption is that each agent believes

of Esponda and Vespa (2014) does not provide a behavioral hypothesis in this case.
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that others will select the PG with the same probability as the agent.33 The

static treatment is solved as a simultaneous game. The dynamic treatment

is solved using backwards induction when ψ = 0, but solved as a sequence of

static, simultaneous, games when ψ = 1.34

Second, a subject level likelihood function is constructed and used to esti-

mate subject level structural parameters. Consider the action ai,r,t ∈ {0, 1},
where 1 denotes selecting the public good, for subject i in round r and deci-

sion status t, taken after observing signal si,r,t.
35 The subject specific expected

cutoff for selecting the public good is given by yi,t, where yi,t is a function of

the preference parameters χR, χH and ψ as described above. We assume that

the agent selects action ai,r,t = 1 whenever

λi(si,r,t − yi,t) + εi,r,t > 0 (4)

where λi is a positive scale parameter and εi,r,t is a random error term with

a logistic distribution, and selects ai,r,t = 0 otherwise.

The likelihood of observing ai,r,t given si,r,t, yi,t and λi is then given by:

li,r,t =
1

1 + e−λi[(si,r,t−yi,t)ai,r,t+(yi,t−si,r,t)(1−ai,r,t)]

when subject i makes an active decision in round r and decision status t,

and li,r,t = 1 otherwise. The log likelihood for subject i is then given by

Li =
60∑
r=1

∑
t∈{S,0,1,2,(1,1)}

ln(li,r,t).

We estimate the subject-level parameters λi, χRi, χHi and ψi via maximum

likelihood estimation. This procedure places a greater likelihood penalty on

33Note that, because agents may be cursed, this does not necessarily imply that the agent
believes that others are using the same cutoff strategy as the agent.

34Two new working papers, Cohen and Li (2023) and Fong et al. (2023), extend the
static Eyster and Rabin (2005) model into dynamic settings. Interestingly, the two papers
present two distinct equilibrium concepts, that are also distinct from the approach taken
here, despite both concepts being a fusion of sequential equilibrium and cursed equilibrium.

35Where the decision status is one of t ∈ {S, 0, 1, 2, (1, 1)}
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“mistakes” that occur further away from the expected cutoff, yi,t.

Third, a clustering algorithm. The clustering algorithm aggregates the sub-

ject level likelihood functions into cluster level likelihood functions, but does

not use the subject level parameter estimates. Conceptually, the algorithm es-

timates a set of parameters for each cluster that, when subjects are optimally

assigned to a cluster, maximizes the sum of log likelihoods across subjects. We

use the Aikaike Information Criterion (AIC) to select the optimal number of

clusters. This imposes a relatively large penalty on cluster size, as increasing

the number of clusters by one results in the loss of one degree of freedom per

subject.

The clustering proceeds as follows. First fix a number of clusters, K ≥ 1,

indexed by k. The algorithm then estimates 4K vectors λk,χRk, χHk and ψk

for 1 ≤ k ≤ K via the following maximum likelihood procedure.

The log likelihood for each subject is given by

Li,K = max
1≤k≤K

60∑
r=1

∑
t∈{S,0,1,2,(1,1)}

ln
( 1

1 + e−λk[(si,r,t−yk,t)ai,r,t+(yk,t−si,r,t)(1−ai,r,t)]

)

The grand log likelihood is then given by LK =
∑

i Li,K .

This procedure is, conceptually, equivalent to considering each possible per-

mutation of subjects into K groups, estimating the parameters for a represen-

tative agent of each group, and then selecting the permutation that maximizes

the log likelihood function subject to the AIC penalty due to the number of

estimated parameters. Computationally, however, maximizing the likelihood

function over permutations of the subjects generates an integer programing

problem that is substantially more computationally intensive than the method

stated above.

33



5.2 Estimation results

Figure 4 displays the subject level structural parameter estimates.36 We only

estimate the model for subjects in the D0 = 30 and D0 = 70 treatments; be-

cause the Nash and Cursed equilibrium coincide in the Simultaneous treatment

when D0 = 0, this treatment does not provide enough variation in cutoffs to

reliably estimate the structural parameters.

Figure 4 displays substantial heterogeneity across subjects, a result that

is to be expected given the heterogeneity already documented in Section 4.3.

The clustering algorithm endogenously determines both the number and the

locations of the clusters within the parameter space. That is, we do not specify

the clusters ex-ante. Remarkably, three out of the four clusters identified by the

algorithm are easily recognizable as having antecedents in the prior literature.

This is illustrated in Figure 5, where the size of each circle is proportional to

the number of subjects contained in that cluster.

The largest cluster, consisting of 39% of subjects, exhibits Eyster and Rabin

(2005) partially cursed beliefs. This cluster exhibits awareness (ψ = 0) and

has cursedness parameters of χR = χH = 0.54. This first cluster exhibits a

constant and partial degree of cursedness across all decision environments, and

considers future stages when making decisions in the dynamic treatment.

The second cluster, consisting of 32% of subjects, is a Nash cluster with

χR = χH = 0 and awareness (ψ = 0). That is, about one third of the subjects

are estimated to exhibit no cursedness, and they consider future stages when

making decisions in the dynamic treatment.

The third cluster, consisting of 24% of subjects, exhibits behavior that

is broadly consistent with the behavioral hypothesis of Esponda and Vespa

(2014). This type is almost fully cursed when considering hypothetical deci-

sions (χH = 0.94), and exhibits myopic unawareness (ψ = 1). When extracting

information from previously realized decisions, this type exhibits only partial

cursedness (χR = 0.48). While a strict application of the ideas in Esponda

36A table showing the subject level estimates, including bootstrapped confidence inter-
vals, is available in Appendix C. The table documents substantial width in the confidence
intervals for many subjects.
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Figure 5: Results from the clustering algorithm. Cluster size is proportional
to the number of subjects in each cluster.
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and Vespa (2014) would imply χH = 1 and χR = 0, the subjects in this cluster

still exhibit behavior that is broadly consistent with Esponda-Vespa reason-

ing: they are substantially better at extracting information from realized, as

compared to hypothetical, events. In effect, these subjects appear to ignore

all information that is available from either concurrent or future decisions, but

extract partial information from past decisions.

The final cluster, consisting of only 5% of subjects, contains subjects who

are apparently not playing cutoff strategies. No parameter combination for

the structural model fits the behavior of this group of subjects well, and they

have a goodness-of-fit parameter of λ ≈ 0. Thus, the position of this cluster

in our three dimensional parameter space has little interpretable meaning.

A bootstrapping procedure provides evidence for the consistency of this

structural model and clustering procedure.37 For each bootstrap we draw a

new sample randomly from the data at the group-round level, and then re-

estimate the model and clustering algorithm.38 Figure 6 displays a contour

map of the probability density function of clusters given 800 bootstraps (i.e.

3200 clusters).39 The largest density occurs at χR = χH = 0 and ψ = 0,

demonstrating the robustness of the Nash equilibrium cluster across boot-

straps. While greater variation exists in other regions of the parameter space,

there is a clear mass of density along the Eyster and Rabin (2005) partially

cursed diagonal. There are also two masses of density with unawareness

(ψ = 1), with the Esponda and Vespa (2014) cluster situated closer to the

mass with χH = 1 and ψ = 1.40

37We also checked for differences in the classification across the two treatment orders
(static first, or dynamic first), and found no evidence of order effects using a Fisher exact
test (p = 0.62).

38For computational reasons, we assume K = 4 clusters for all bootstraps rather than
allowing the number of clusters to be determined endogenously as in the original data
analysis.

39We use a kernel density estimator that corrects for boundary effects using the reflection
method.

40We also conducted a second bootstrapping analysis, at the suggestion of an anonymous
referee. In this alternative bootstrap, we test for stability of the size of each cluster (rather
than the location of each cluster). The 95% CI for the percentage of subjects assigned to
the Eyster-Rabin cluster is [35%, 47%], to the Nash cluster is [26%, 38%], to the E-V Cluster
is [16%, 26%], and to the irrational cluster is [5%, 7%].
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6 Discussion

In the previous section we applied our structural model to a particular ex-

perimental design. As outlined in Section 2 it is conceptually straightforward

to apply the same three parameter model to a variety of other games of pri-

vate information with interdependent values. It remains an open question,

for future research, whether the specific parameter estimates found here are

directly applicable to other environments.41 For example, estimates of χH and

χR may be higher in more complex decision making contexts, and lower in en-

vironments where subjects find it easier to process information. In particular,

considering the results of Martinez-Marquina et al. (2019), it is reasonable to

expect the difference χH − χR, the complexity of contingent thinking, would

be greater in decision making environments where the state space is larger (or

otherwise more complex). The awareness of subjects, as measured by ψ, might

also vary across environments. In less complex environments subjects might

realize that future decisions of others are important, while in more complex

environments this dependency may be shrouded.

The results from our clustering algorithm (Figure 5) are generally support-

ive of the two models in the literature that are most naturally applied to our

environment: Nash equilibrium and Cursed equilibrium. Fully 71% of the sub-

jects are assigned to clusters that coincide exactly to either Nash equilibrium

or (partially) Cursed equilibrium behavior. Although the experimental de-

sign, and conceptual framework, were originally motivated by the distinction

between hypothetical contingent thinking and inference from realized events,

one interpretation of this result is that 71% of the subjects do not perceive

(or, at least, do not respond to) such a distinction. This result coincides with

previous papers that have found substantial failures of contingent reasoning

with respect to realized events (Carillo and Palfrey, 2009; Araujo et al., 2021),

and supports the validity of our conceptual model which allows for, but does

not impose, a distinction between hypothetical and realized events.

41Identification of the model requires both static and dynamic environments. We are not
aware of previous work that includes a data set rich enough to estimate it.
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The third largest cluster, consisting of 24% of the subjects, does process

information from hypothetical and realized behavior differently. The source

of the failure of hypothetical contingent reasoning is both unawareness and

complexity.42 This cluster exhibits unawareness (ψ = 1) and faces a moderate

complexity penalty (χH−χR = 0.46). Notably, this cluster of subjects remains

partially cursed even when considering realized events (χR = 0.48). Thus, our

results are related to, but distinct from, those of Esponda and Vespa (2014).43

Both clusters containing subjects with cursed beliefs feature partial cursed-

ness, which is difficult to interpret literally. Partial cursedness is usually given

a probabilistic interpretation such that a χ-cursed agent believes with proba-

bility 1− χ that her opponents’ actions depend on their private signals, while

with probability χ they do not (Eyster and Rabin, 2005). The difficulty arises

from the observation that once an agent “knows” that there is some informa-

tion in others’ behavior it is awkward to envision that they only partially take

this into account.

Instead, we suggest that an empirical interpretation of cursedness, which

leverages a more literal interpretation of unawareness than we presented in

Section 2, is more appropriate here.44 In particular, given a literal interpre-

tation of awareness, we interpret a partially cursed agent as actually being

either fully cursed, or not cursed, but implements their strategy with error.

This error leads to choices that look like partially cursed behavior.

This empirical interpretation of partial cursedness interacts with awareness

in a natural fashion. For example, it is intuitive to suppose that an unaware

42Relatedly, Ali et al. (2021) provides evidence that failures of contingent reasoning are
caused by complexity. They found that over 75% of subjects who fail to correctly apply
contingent reasoning to an adverse (or advantageous) selection environment were able to
correctly answer factual questions that isolated each step of the contingent reasoning process.
Correct answers to the factual questions implies that these subjects had an awareness of
the logic of contingent reasoning, yet they were still unable to apply this logic to a more
complicated, multi-step, environment.

43This difference is likely a function of the different games used in the two studies. In the
voting game of Esponda and Vespa (2014) it is, arguably, harder to recognize the inference
problem in the hypothetical context but easier to perform the inference conditional on having
recognized it.

44We thank an anonymous referee for the suggestion that we explore this interpretation.
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agent should have χH = 1. If this agent is measured empirically to be partially

cursed with χH < 1, we can conclude that the agent is implementing a fully

cursed strategy with error. In other words, the agent is using a strategy

that does not rely on any correlation between opponent actions and opponent

signals, but it is not the fully cursed strategy. An example of such a strategy

could be an agent who has fully cursed beliefs, but feels that contribution to

the group project is a demonstration of “team spirit” and thus uses a cutoff

that is below the fully cursed cutoff. In the dynamic treatment, the same

agent might react to the observation that others have committed to the group

project with reciprocity.

On the other hand, it is also natural that a subject who exhibits awareness

should have χH = 0 and χR = 0. An aware subject understands that a signal

extraction problem exists in the static treatment. If this agent is measured

to be, empirically, partially cursed with χH > 0, or χR > 0, we can conclude

that the complexity of the computation causes the agent to under-extract

information from the behavior of others. Of course, for aware subjects it is

still feasible to adhere to the traditional, probabilistic, interpretation of partial

cursedness, and for unawareness to be interpreted as myopic unawareness as

per Section 2.

Also of interest is that we detect only weak time trends in aggregate out-

comes, which suggests limited learning. Moreover, the individual level strategy

estimation does not present substantial evidence of learning.45 In particular, it

might appear surprising that a substantial proportion of our subjects are iden-

tified as being unaware of inference problems in the first stage of the dynamic

treatment, yet at least partially resolve the inference problem in later stages,

without realizing their mistake after repeated plays of the game. This is remi-

niscent of a surprising finding in Esponda and Vespa (2014). Through repeated

play in their sequential voting treatment subjects displayed an understanding

of what to do in each realized contingency–but when they subsequently faced

45If subjects were learning, or adjusting their intended cutoff targets over time, then
we would expect to observe greater error indexes when estimating subject level cutoffs in
Section 4.2. See also footnote 37.
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the simultaneous version they behaved as if they did not have this experience.

There are two plausible explanations for this lack of learning among un-

aware subjects in our experiment. First, subjects may become aware, through

experience, that they should consider extracting information from the hypo-

thetical behavior of their opponents yet remain unable to figure out how to

do so and, therefore, do not alter their behavior. Alternatively, a subject

may never realize that they should extract information from the hypotheti-

cal behavior of opponents because they do not pay attention to the feedback

provided at the end of each round. Such an outcome would be consistent

with models of rational inattention, which have recently found experimental

support in Dean and Neligh (2022) and Martin (2016).

Finally, note that the model’s measure of complexity, the difference χH −
χR, is a behavioral proxy for the underlying complexity of contingent thinking.

Primarily, we consider the underlying source to be a complexity of calculation.

Even when a person knows that they should condition a calculation on par-

ticular state(s) of the world, the mere existence, and potential realization, of

non-payoff relevant states makes the calculations more difficult to perform.

This intuition is also reflected in recent work by Martinez-Marquina et al.

(2019), who decompose the complexity of contingent thinking into two compo-

nents: a complexity induced by the number of potential outcomes (“states”)

that must be considered, and a complexity induced by a lack of certainty.

Thus, our notion of complexity incorporates the computational complexity of

Martinez-Marquina et al. (2019) but does not include the power of certainty,

and we do not attempt to decompose complexity into its component pieces.

7 Conclusion

As noted in the introduction, it is uncommon for threshold PG environments

to involve simultaneous decision making. Nevertheless, the incentives for a

threshold PG game can be modified to reflect either the dynamic or static

treatments by revealing, or not revealing, respectively, the current level of

contributions in real time. The choice of information structure is therefore an
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important and easily manipulable policy variable for the designer of a threshold

PG mechanism.

Our theoretical analysis suggests that there is an important tradeoff be-

tween the static and dynamic mechanisms. The static mechanism generates a

higher rate of PG provision, but achieves this, in part, by increasing the propor-

tion of times that the PG is provisioned inefficiently. The dynamic mechanism

can improve PG provision choices, but introduces greater complexity. For

a crowdfunding company such as Kickstarter this implies a tradeoff between

revenue (which is a function of the number of projects that are financed) and

long term reputation (which is harmed when consumers purchase or support

a poor product).

The experimental results do not support this theoretical tradeoff. The rate

of PG provision in the dynamic treatment is, if anything, slightly higher than

in the static treatment and we do not find a difference in the rate of “mistak-

enly” provisioned PG. Further, because the threshold for committing to the

PG is substantially higher in the first stage of the dynamic treatment than

the static treatment, there will be fewer near-misses (where a PG almost, but

not quite, reaches the funding threshold) in the dynamic mechanism. Each

of these properties suggests that the dynamic mechanism is likely to be more

desirable from a practical standpoint. It is therefore perhaps no accident that

Kickstarter and other crowdfunding sites typically update previous contribu-

tions continuously to promote information dissemination in their versions of a

dynamic mechanism.

Our experiment introduced a dynamic treatment with an endogenous choice

of public good contribution timing in order to distinguish unawareness from

previously studied types of complexity leading to failures of contingent rea-

soning. We find evidence, consistent with the existing literature, for failures

of contingent thinking: decisions in the static treatment are biased towards

Cursed equilibrium. We also find that strategies in the first stage of the dy-

namic treatment differ significantly from strategies in the static treatment.

This suggests that, in aggregate, unawareness is not a primary determinant of

behavior. Unawareness implies ignorance about the option value of waiting,
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and our structural analysis classifies only a minority (about one-quarter) of

subjects as unaware. We also find that unawareness and complexity effects of

hypothetical contingent reasoning are correlated across individuals. Although

human beings may be innately aware of the need for contingent thinking, and

that they should take actions that allow their future selves to make use of valu-

able contingent information, it appears that many have difficulty in effectively

solving contingent thinking problems optimally.
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A Theory (submitted for online publication

only)

For ease of exposition we present the game with a continuous signal space

on the interval [0, 1], and also assume that D0 ∈ [0, 1].46 Our experimental

implementation, as discussed in the main text, uses a discrete signal space on

the interval [0, 100] to avoid the need to use decimal notation.

Formally, the game is a Bayesian game given that each player has a private

signal. We demonstrate, however, that all agents use cutoff strategies and

that the equilibrium can be parsimoniously represented by the corresponding

cutoffs without the need to carry extra notation for beliefs. We assume that

the ex-ante probability of selecting the public good is strictly positive and

identical for all agents; this assumption rules out asymmetric equilibrium and

the trivial equilibrium where no one ever selects the public good.

Denote an agent’s beliefs about the likelihood that another agent will select

the public good, as a function of the other agent’s signal, by β : [0, 1] → [0, 1].47

Given β(sj) we can define b =
∫ 1

sj=0
β(sj) > 0 to be the expected probability

that another agent will select the public good, E[sj|PG] =
∫ 1

sj=0
β(sj)sj to be

the expected value of the other agent’s signal conditional on the agent selecting

the public good, and E[sj|RG] =
∫ 1

sj=0
[1 − β(sj)]sj to be the expected value

of the other agent’s signal conditional on the agent selecting the private good.

Denote E[PG] and E[RG] to be the expected payoff for selecting the public

good or private good, respectively.48

Lemma 1. All agents will play cutoff strategies in the static treatment. That

is, there exists a yi such that agent i will choose the public good if si ≥ yi and

choose the private good if si < yi.

46For a definition of the game and notation, the reader is referred to the main paper.
47Given our symmetry assumption, the agent holds the same beliefs regarding the behavior

of each of the other two players.
48Note that these values are the expected payoffs associated with the given actions, while

the values E[P ] and E[Vi] in the main text are the payoffs associated with the outcomes of
receiving the public or private goods.
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Proof. E[RG] = D0 + 1, and

E[PG] = (1−b)2E[RG]+2(1−b)b
[
si+E[sj|PG]+E[sj|RG]

]
+b2

[
si+2E[sj|PG]

]
.

E[RG] is independent of si while, because of the assumption that b > 0, E[PG]
is strictly increasing in si. The result follows.

We therefore proceed by restricting attention to cutoff strategies and sim-

plify the notation for beliefs. We employ the following notation: y denotes the

cutoff above which an agent selects the public good whenever s ≥ y; p denotes

the belief regarding the probability that others select the public good; and

equilibrium quantities are appended with an asterisk (y∗ and p∗). We focus

on symmetric equilibria such that, in equilibrium, y∗ = 1− p∗.

Lemma 1 is easily extended to each history of the dynamic treatment, at the

expense of some extra notation. As a consequence, we document the dynamic

treatment as a sequence of cutoff strategies, one for each history. We impose

one additional assumption in the dynamic treatment: that the equilibrium is

a “no-delay” equilibrium. That is, if at any stage of the game all agents select

the private good, then no agent will switch to selecting the public good in any

future stage.49 Imposing this assumption pins down beliefs on off-equilibrium

paths.

A.1 Static treatment

We begin with the static treatment. In the static treatment the relevant

cursedness parameter is χH : all inference is conducted with respect to the

hypothetical decisions of others. ψ has no role to play in the static treatment,

as there is no future to consider.

49This rules out equilibria of the following variety: all agents select the private good for
the first two stages, and then play the static equilibrium in the third stage. This assumption
is also justified by observed behavior in the experiment, which indicates that subjects did
not universally delay their choice of the public good. For example, 143 out of the 144
participants chose the public good at least once in the first stage of the dynamic treatment.
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Proposition 1. In the static treatment the cutoff, y∗S, satisfies

y∗S =
D0 − 1 +

√
1 + 6D0 − 4χHD0 +D0

2

2(2− χH)
.

Proof. Suppose that an agent expects each other player to select the public

good with probability p. E[RG] = D0 + 1, and

E[PG|si] =(1− p)2
[
D0 + 1

]
+ p2

[
si + 2(1− p

2
+ χH(

p

2
− 1

2
))
]

+ 2p(1− p)
[
si + (1− p

2
+ χH(

p

2
− 1

2
)) + (

1− p

2
+
χHp

2
)
]
.

The result follows after setting E[PG|si = y∗S] = E[RG], substituting p =

1−y∗S, and solving for y∗ (choosing the positive arm of the resulting quadratic

equation).

Substituting χH = 0 returns the Bayesian Nash equilibrium cutoff, yNS =
D0−1+

√
1+6D0+D0

2

4
, and substituting χH = 1 returns the fully Cursed equilib-

rium, yCS = D0.

A.2 Dynamic treatment

The dynamic treatment with unawareness, ψ = 1, involves agents who solve a

series of static problems: by definition, agents ignore the future when making

any decision. An unaware agent ignores all future information, and also ignores

the possibility of transmitting information to others. Therefore, the first stage

of the dynamic treatment is functionally identical to the static treatment.

That is, y∗0 = y∗S when ψ = 1.

When the unaware agent arrives at the second stage, they are surprised by

the arrival of new information. Importantly, the unaware agent is not able to

condition beliefs on the “correct” event in the case that they observe exactly

one other player select the public good.50 Upon arriving in the second stage,

50As discussed below, an agent with ψ = 0 will condition on the event that the remaining
player does not select the public good in the second stage. However, because this reasoning
requires the agent to think ahead to the third stage, an unaware agent does not perform
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the unaware agent assumes, in equilibrium, that both other players chose the

public good with probability p∗0 = 1− y∗0 in the first stage. Further, the agent

evaluates the new information with the cursedness parameter χR: the first

stage choices of the other players are now realized, rather than hypothetical,

events.

Lemma 2. In the second stage, after observing exactly one other player select

the public good in the first stage, the cursed cutoff for an agent with ψ = 1 in

the second stage satisfies:

y∗1 = min{max{D0 + (1− χR)(p
∗
0 −

1

2
), 0}, 1}.

Proof. The unaware agent expects to receive the private good if they select

the private good in the second stage, ignoring the future possibility to select

the public good, such that E[RG] = D0 + 1. Meanwhile, E[PG|si] = si + [1−
p∗0
2
+ χR(

p∗0
2
− 1

2
)] + [

1−p∗0
2

+
χRp

∗
0

2
]. Solving E[RG] = E[PG|si = y] yields the

required equation. If y < 0 then the agent always selects the public good, such

that y∗1 = 0, and if y > 1 then the agent never selects the public good, such

that y∗1 = 1.

Lemma 3. In the second stage, after observing two other players select the

public good in the first stage, the cursed cutoff for an agent with ψ = 1 in the

second stage satisfies:

y∗2 = max{D0 + (1− χR)
[
p∗0 − 1

]
, 0}. (5)

Proof. E[RG] = D0 + 1 and E[PG|si] = si + 2[1 − p∗0
2
+ χR(

p∗0
2
− 1

2
)]. Solving

for E[PG|si = y] = E[RG] yields the solution. If y < 0 then the agent always

selects the public good, such that y∗2 = 0.

For an unaware agent, in contrast to the case with aware agents discussed

below, it is possible that the equilibrium cutoff increases from the first stage

to the second stage. This is because an unaware agent is surprised by new

this inference.
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information in the second stage and, in some cases, this new information may

make the public good appear less attractive.

As before, we write p0 to denote the expected probability that each other

player selected the public good in the first stage, and we now write p1 to denote

the expected probability that each other player selected the public good in

either the first or second stage. That is, p0 = 1−y0 and p1 = max{1−y0, 1−y1}.

Lemma 4. In the third stage, after observing one other player select the

public good in the first stage and one other player select the public good in

the second stage, the equilibrium cutoff for the unaware agent in the third

stage satisfies:

y∗1,1 = min{max{D0 + (1− χR)
[
p∗0 +

p∗1
2

− 1
]
, 0}, 1}.

Proof. The equilibrium cutoff must solve E[PG|si = y] = E[RG] where E[RG] =
1+D0 and E[PG|si] = si+ [1− p∗0

2
+χR(

p∗0
2
− 1

2
)]+ [1− p∗0+p∗1

2
+χR(

p∗0+p∗1
2

− 1
2
)].

If y < 0 then the agent always selects the public good, such that y∗1 = 0, and

if y > 1 then the agent never selects the public good, such that y∗1 = 1.

Dynamic treatment with awareness For an agent with awareness, we

proceed via backwards induction. However, the aware and unaware agent

agree on how to proceed in the cases where both other players have already

selected the public good. Therefore, for an agent with ψ = 0, we have that

y∗1,1 = D0 + (1− χR)
[
p∗0 +

p∗1
2
− 1

]
and y∗2 = D0 + (1− χR)

[
p∗0 − 1

]
, whenever

these values lie between 0 and 1, as before.

Note, however, that the aware and unaware agents will, typically, not have

the same values of p∗0 and p∗1. This implies that the two types of agents also

disagree about the cutoff values y∗1,1 and y∗2.

We assert that the equilibrium must satisfy y∗0 ≥ y∗1 ≥ y∗1,1, and establish

this monotonocity condition in the following two lemmas.

Lemma 5. Either y∗1 > y∗1,1 or y∗1 = y∗1,1 = 0.

Proof. Suppose that 0 < y∗1 ≤ y∗1,1, and consider an agent in the second stage.

We seek a contradiction.
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In this case, an agent who does not select the public good in the sec-

ond stage will never do so in the third stage. Therefore, E[RG] = D0 + 1.

Meanwhile, E[PG|si] = si + 1 − p∗0
2
+ χR(

p∗0−1

2
+

1−p∗0
2

+ χR
p∗0
2
. In equilibrium,

E[RG] = E[PG|si = y∗1], which implies that y∗1 = D0 + (1 − χR)(p
∗
0 − 1

2
).

Therefore, either y∗1 = 0 = y∗1,1 or y∗1 > y∗1,1, a contradiction.

Lemma 6. y∗0 ≥ y∗1.

Proof. Consider an agent with signal si = y∗0 < y∗1. We consider three cases.

First, suppose that both other players select the public good in the first

stage. If si < y∗2 then the agent prefers not to receive the public good, and if

si ≥ y∗2 the agent is indifferent between selecting the public good or not in the

first stage.

Second, suppose that exactly one other player selects the public good in

the first stage. In this case, the agent prefers not to receive the public good

(because si < y∗1 by assumption).

Third, suppose that both other players select the private good in the first

stage. In this case, neither player will select the public good in the second

stage either because y∗0 < y∗1 by assumption. Therefore the agent can never

receive the public good and is indifferent.

In each case the agent is either indifferent or prefers not to select the

public good in the first stage. Therefore, the agent will never select the public

good in the first stage when si < y∗1. There cannot exist an equilibrium with

y∗0 < y∗1.

The declining cutoff values clarify the events that must be conditioned on

at each stage of the game. Consider the case where exactly one agent selected

the public good in the first stage. The two remaining agents will then play

a continuation game in the second stage where each agent should condition

expectations on the remaining opponent not selecting the PG in the second

stage. To see why, consider that an agent with si < y∗1,1 will never prefer the

PG. For an agent with si ≥ y∗1,1, they always prefer the PG in the event that

the remaining opponent selects the PG in the second stage. But, conditional

on this event, the agent is indifferent between selecting the PG or not in the
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second stage: if they do not select it, then they can simply select the PG in

the third stage. Therefore, the event where the opponent does not select the

PG in the second stage is the critical event.

Rolling back to the first stage, similar reasoning applies. The agent should

condition behavior on the event where both opponents do not select the PG

in the first stage. If another agent does select the PG in the first stage, then

the agent can always select, and receive, the public good in the second stage.

Lemma 7. In the second stage, after observing exactly one other player select

the public good in the first stage, the equilibrium cutoff for the aware agent

in the second stage y∗1 satisfies:

y∗1 =
χR − χH + 2D0 + (1− χR)p

∗
0

3− χH

(6)

Proof. Conditioning on the hypothetical event that the remaining player not

selecting the public good, E[RG] = 1 + D0 and E[PG|si] = si + [1 − p∗0
2
+

χR(
p∗0
2
− 1

2
)] + [1−p1

2
+ χHp1

2
]. Solving for E[RG] = E[PG|si = y∗1], substituting

p1 = 1− y∗1 and si = y∗1, yields the required solution.

Lemma 8. In the first stage y∗0 for the aware agent satisfies:

y∗0 =
D0 − 1 + 2p∗1 − χHp

∗
1 +

√
∆

2(2− χH)
(7)

where ∆ = (D0 − 1 + 2p∗1 − χHp
∗
1)

2 − 4(2 − χH)(−D0 − p∗1 + χHp
∗
1 +D0p

∗
1 +

p∗1
2 − χHp

∗
1
2).

Proof. E[RG] = 1 + D0. The expected value of the public good depends on

the response of the other players in the second stage. The probability of each

other player selecting the public good in the second stage, conditioned on the

player not selecting it in the first, is given by
p∗1−p0
1−p0

and the probability of the

player selecting the private good is
1−p∗1
1−p0

.

Thus, E[PG|si] = (1−p∗1)
2

(1−p0)2
(1+D0)+

(p∗1−p0)2

(1−p0)2
(si+(1−p∗1)+(1−p0)+χH(p0+

p∗1 − 1)) +
(p∗1−p0)(1−p∗1)

(1−p0)2
(si +

1−p∗1
2

+
2−p0−p∗1

2
+ χH(p

∗
1 +

p0
2
− 1

2
)).
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Setting E[PG|si = y∗0] = E[RG], substituting y∗0 = 1 − p0, and solving for

y∗0 yields the required expression.

Given values for χR and χH , equations 7 and 6 can be solved simultane-

ously using numerical methods. A solution always exists whenever 0 ≤ χR ≤
χH ≤ 1, but may not exist for parameters outside these bounds. The Nash

equilibrium is found by setting χR = χH = 0, and the cursed equilibrium by

setting χH = χR = 1.

B Counterfactual Simulations (submitted for

online publication only)

This appendix uses the estimated preference parameters to run some illus-

trative counterfactual simulations. The simulations serve multiple purposes:

they validate our modeling approach, illustrate the utility of decomposing

failures of counterfactual thinking into components related to complexity and

unawareness, and provide insight into the cause of deviations from equilibrium

behavior documented in Section 4.

We present two simulations. The first simulation, the Baseline simulation,

is intended to validate our model. The Baseline simulation takes, as a starting

point, the estimated χH , χR, ψ and λ parameters for each of the 96 subjects in

the D0 = 30 and D0 = 70 treatments. The second simulation, the Unaware-

ness simulation, simulates a counterfactual world in which all subjects exhibit

unawareness. In this case, we use the estimated values of χH , χR and λ but

set ψ = 1 for all subjects.

Each simulation consists of 1000 sub-simulations. Each sub-simulation

consists of a complete recreation of the D0 = 30 and D0 = 70 treatments.

That is, the 96 simulated subjects are randomly sorted into 8 matching groups

of 12 subjects each, with 4 matching groups being assigned to each of the

D0 = 30 and D0 = 70 treatments. Each matching group is then simulated

to participate in 20 static rounds and 40 dynamic rounds, with the matching
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group of 12 subjects randomly split into 4 groups of 3 subjects each round.

For each subject, the cutoff strategies are a deterministic function of χH , χR

and ψ and calculated as outlined in Appendix A. At each decision node the

action choice is determined using Equation 4 by drawing a random value for

ϵi,r,t from a logistic function and selecting the PG if the inequality is true. For

each sub-simulation the aggregate rate of PG provision and the rate of PG

over-provision (i.e. cases where the PG is provisioned despite the private good

having a higher value) are recorded.

The results are presented in Figure 7. The rate of PG provision is shown

in the top two panels, and the rate of PG over-provision in the bottom two

panels. Each figure displays the equilibrium predictions, the observed data,

and the outcomes of both the Baseline and Unawareness simulations.

Figure 7: Rate of PG provision (top panels) and over-provision (bottom pan-
els). Left hand panels show the static treatment, and right hand panels show
the dynamic treatment. The D0 = 30 treatment is displayed with blue crosses,
and the D0 = 70 treatment with red circles.

The Baseline simulations provide a validation check of the structural model.

The model performs well, with the observed data falling within bootstrapped

95% confidence intervals for all eight target outcomes. Although the Baseline

simulation is an in-sample test, consistency of the simulations with the data
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is not trivial. First, the simulations take all 96 subjects from the D0 = 30 and

D0 = 70 treatments and rematch them across the two treatments. Thus, there

is a possibility that uncontrolled treatment effects could derail the simulations.

In addition, the structural model places substantial restrictions on the set of

strategies that are coherent with the model given that it identifies five cutoff

points per subject using only three preference parameters. If the structural

model is mispecified, in the sense that it rules out strategies that subjects are

actually using, then the simulations could miss the targets.

Some comments on the interpretation of the Unawareness simulations are

in order given that manipulating subject awareness has no effect on behavior in

the static treatment, a result which may appear counterintuitive. In the static

treatment, behavior is governed solely by the cursedness parameter χH . Thus,

χH can be interpreted as capturing the extent of difficulties with contingent

reasoning in the standard, simultaneous task. We then use the two parameters,

χR and ψ, to decompose the cause of the difficulty of contingent reasoning.

The difference χH −χR captures the change in the difficulties of contingent

reasoning when moving from a hypothetical to realized contingent reasoning

task. And χR captures the residual difficulty when dealing solely with re-

alized contingent reasoning. Thus, we can interpret χR as partitioning the

complexity of contingent reasoning into two pieces: the piece associated with

the hypothetical problem, and the piece associated with the realized problem.

The awareness parameter, ψ, can then be interpreted as a distinct aspect

of the contingent reasoning problem. Is the subject ex-ante aware that the

hypothetical contingent reasoning problem is distinct from the dynamic contin-

gent reasoning (i.e. that first stage behavior of others will generate a valuable

signal, and that the signal may, in addition, be easier to decode than initial

behavior)? Whether the subject is aware of this distinction has no bearing on

behavior in the static treatment given that the estimate of χH already fully in-

corporates the difficulties with hypothetical reasoning in the static treatment.

Instead, we can think of ψ as identifying whether there is a component of χH

that is derived from unawareness.

The Awareness simulation can, therefore, reveal the effects of unawareness
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while holding the aggregate complexity of contingent reasoning constant. The

results indicate that a population that is unaware about the future value of in-

formation has a higher rate of both PG provision and PG over-provision in the

dynamic treatment. Thus, a behavioral mechanism designer who is concerned

about minimizing over-provision rates might find it useful to emphasize the

value of future information to participants, while a designer who is concerned

with maximizing PG provision rates might wish to de-emphasize the value of

future information.

C Supplementary results (submitted for on-

line publication only)

This appendix contains some supplementary results. Table 6 reports the public

good provision and overprovision rate, summarized in Result 3 at the end of

Section 4.1. Table 7 provides a further breakdown of this information, splitting

the dynamic treatment results into the first 20 and last 20 rounds. Figure 8

displays the CDF of the midpoint of the cutoff intervals for individual subjects

in the static treatment and in the first stage of the dynamic treatment.

Finally, Table 8 presents the subject level parameter estimates for the

structural model described in Section 5 of the main text.

Table 8: Individual level structural parameter estimates. Values in square
brackets are bootstrapped 95% confidence intervals. Values in parentheses
are the proportion of bootstraps in which ψ = 1. λ is the goodness of fit
parameter, where higher values indicate a better model fit.

ID χH χR ψ λ ID χH χR ψ λ

1 0.73 0.25 1 0.00 61 0.56 0.07 0 18.71

[0.00,0.81] [0.00,0.43] (0.49) [0.32,1.00] [0.00,0.37] (0.05)

2 0.67 0.67 0 20.16 62 0.83 0.39 0 7.74

[0.35,0.84] [0.33,0.83] (0.01) [0.28,1.00] [0.00,0.83] (0.32)

3 0.15 0.15 0 10.11 63 0.00 0.00 0 23.71

[0.00,1.00] [0.00,0.34] (0.04) [0.00,0.44] [0.00,0.36] (0.01)

4 0.35 0.35 0 11.30 64 0.67 0.34 0 17.60

[0.00,0.82] [0.00,0.72] (0.03) [0.32,0.82] [0.00,0.48] (0.00)

5 0.13 0.13 0 10.65 65 1.00 1.00 0 9.77

[0.00,0.64] [0.00,0.64] (0.00) [0.82,1.00] [0.00,1.00] (0.43)
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Table 8: Individual level structural parameter estimates. Values in square
brackets are bootstrapped 95% confidence intervals. Values in parentheses
are the proportion of bootstraps in which ψ = 1. λ is the goodness of fit
parameter, where higher values indicate a better model fit.

ID χH χR ψ λ ID χH χR ψ λ

6 0.00 0.00 0 1.22 66 0.45 0.45 0 23.19

[0.00,0.68] [0.00,0.24] (0.04) [0.11,0.92] [0.00,0.61] (0.19)

7 0.96 0.96 0 10.31 67 0.40 0.40 0 8.37

[0.48,1.00] [0.00,1.00] (0.36) [0.00,1.00] [0.00,1.00] (0.02)

8 0.00 0.00 0 6.45 68 0.06 0.00 0 26.71

[0.00,0.44] [0.00,0.44] (0.00) [0.00,0.44] [0.00,0.10] (0.00)

9 0.00 0.00 0 5.18 69 0.57 0.14 0 9.41

[0.00,0.00] [0.00,0.00] (0.00) [0.32,0.98] [0.00,0.86] (0.00)

10 0.91 0.91 0 5.18 70 1.00 1.00 0 12.75

[0.00,1.00] [0.00,1.00] (0.26) [0.80,1.00] [0.61,1.00] (0.63)

11 0.71 0.71 0 19.07 71 0.14 0.14 0 13.33

[0.56,1.00] [0.04,0.82] (0.06) [0.00,0.54] [0.00,0.51] (0.00)

12 0.00 0.00 0 6.65 72 0.58 0.58 0 15.85

[0.00,0.00] [0.00,0.00] (0.00) [0.34,1.00] [0.27,0.93] (0.16)

13 0.67 0.65 0 11.46 97 0.37 0.07 0 62,849,835.02

[0.00,1.00] [0.00,0.81] (0.41) [0.30,0.80] [0.05,0.32] (0.00)

14 0.76 0.64 0 25.49 98 0.65 0.65 0 7.39

[0.65,0.90] [0.00,0.79] (0.00) [0.37,1.00] [0.00,0.78] (0.20)

15 0.75 0.75 1 10.16 99 0.58 0.46 0 19.06

[0.13,1.00] [0.04,0.99] (0.53) [0.33,0.76] [0.07,0.58] (0.01)

16 0.09 0.09 0 12.39 100 0.85 0.85 0 7.61

[0.00,0.64] [0.00,0.64] (0.00) [0.54,1.00] [0.10,1.00] (0.17)

17 0.00 0.00 0 7.02 101 0.93 0.29 0 17.22

[0.00,0.41] [0.00,0.37] (0.00) [0.67,1.00] [0.00,0.81] (0.15)

18 0.82 0.15 1 10.31 102 1.00 0.00 1 5.44

[0.00,1.00] [0.00,0.88] (0.97) [0.00,1.00] [0.00,0.41] (0.57)

19 0.30 0.30 0 14.39 103 0.68 0.57 0 13.03

[0.00,0.65] [0.00,0.63] (0.01) [0.00,1.00] [0.00,0.76] (0.38)

20 0.14 0.14 0 10.06 104 0.70 0.70 0 13.59

[0.00,0.52] [0.00,0.50] (0.00) [0.50,0.87] [0.00,0.86] (0.00)

21 0.72 0.28 0 0.00 105 0.12 0.12 0 15.18

[0.47,0.89] [0.11,0.59] (0.67) [0.00,0.42] [0.00,0.34] (0.00)

22 0.41 0.41 0 16.03 106 0.26 0.04 0 9.85

[0.26,1.00] [0.00,0.52] (0.07) [0.00,0.72] [0.00,0.70] (0.00)

23 0.76 0.00 0 7.93 107 0.66 0.66 0 15.60

[0.32,0.99] [0.00,0.63] (0.02) [0.18,0.81] [0.18,0.81] (0.00)

24 0.00 0.00 0 10.03 108 0.59 0.00 0 19.43

[0.00,0.68] [0.00,0.68] (0.00) [0.32,0.75] [0.00,0.55] (0.00)

25 0.34 0.34 1 10.63 121 1.00 1.00 1 0.66

[0.00,0.78] [0.00,0.62] (0.95) [0.00,1.00] [0.00,1.00] (0.39)

26 0.24 0.24 0 13.84 122 0.69 0.69 0 14.88

56



Table 8: Individual level structural parameter estimates. Values in square
brackets are bootstrapped 95% confidence intervals. Values in parentheses
are the proportion of bootstraps in which ψ = 1. λ is the goodness of fit
parameter, where higher values indicate a better model fit.

ID χH χR ψ λ ID χH χR ψ λ

[0.00,0.88] [0.00,0.71] (0.35) [0.25,1.00] [0.21,0.98] (0.42)

27 0.53 0.18 0 8.97 123 0.20 0.00 0 8.47

[0.01,1.00] [0.00,0.74] (0.18) [0.00,0.47] [0.00,0.00] (0.00)

28 0.25 0.25 0 8.70 124 0.53 0.53 1 7.74

[0.00,0.89] [0.00,0.60] (0.05) [0.00,1.00] [0.00,1.00] (0.95)

29 1.00 0.33 1 4.34 125 0.60 0.60 0 26.43

[0.05,1.00] [0.00,1.00] (0.39) [0.30,0.92] [0.30,0.68] (0.03)

30 1.00 1.00 0 3.94 126 0.72 0.72 0 5.96

[0.00,1.00] [0.00,1.00] (0.29) [0.06,1.00] [0.00,1.00] (0.39)

31 0.34 0.34 0 9.04 127 0.65 0.00 1 5.60

[0.00,0.97] [0.00,0.65] (0.07) [0.00,1.00] [0.00,0.06] (0.78)

32 0.95 0.00 1 14.97 128 0.57 0.00 1 31.80

[0.25,1.00] [0.00,0.15] (0.58) [0.18,0.80] [0.00,0.41] (0.78)

33 0.36 0.36 0 8.01 129 0.18 0.18 0 14.62

[0.01,1.00] [0.00,0.84] (0.19) [0.00,0.49] [0.00,0.47] (0.02)

34 0.31 0.19 0 35.86 130 0.06 0.06 0 34.20

[0.03,0.62] [0.00,0.48] (0.00) [0.00,0.60] [0.00,0.40] (0.01)

35 0.93 0.44 1 13.07 131 0.63 0.24 0 22.33

[0.32,1.00] [0.00,1.00] (0.79) [0.28,1.00] [0.00,0.58] (0.05)

36 0.56 0.48 0 16.16 132 0.72 0.28 0 0.00

[0.29,1.00] [0.11,1.00] (0.19) [0.50,0.85] [0.23,0.51] (0.55)

37 0.00 0.00 0 8.06 133 0.30 0.30 0 11.14

[0.00,0.61] [0.00,0.10] (0.04) [0.00,0.80] [0.00,0.80] (0.00)

38 0.37 0.08 0 11.09 134 0.00 0.00 1 5.52

[0.00,1.00] [0.00,0.72] (0.27) [0.00,0.55] [0.00,0.55] (1.00)

39 0.37 0.03 0 7.88 135 0.00 0.00 0 7.66

[0.00,1.00] [0.00,1.00] (0.27) [0.00,0.14] [0.00,0.14] (0.00)

40 0.01 0.00 0 7.83 136 0.71 0.34 0 12.76

[0.00,0.60] [0.00,0.55] (0.01) [0.42,0.91] [0.00,0.76] (0.01)

41 0.46 0.09 0 10.84 137 0.18 0.18 0 12.13

[0.16,1.00] [0.00,1.00] (0.05) [0.00,0.52] [0.00,0.49] (0.01)

42 0.60 0.44 0 14.77 138 0.57 0.57 0 6.43

[0.20,1.00] [0.00,0.67] (0.07) [0.09,0.81] [0.00,0.77] (0.03)

43 0.70 0.70 0 14.66 139 0.00 0.00 1 10.31

[0.13,1.00] [0.10,1.00] (0.02) [0.00,1.00] [0.00,0.67] (0.85)

44 0.70 0.00 1 15.74 140 0.00 0.00 1 4.30

[0.00,0.87] [0.00,0.47] (0.58) [0.00,1.00] [0.00,0.54] (0.99)

45 0.81 0.18 1 2,101,298.50 141 0.65 0.65 0 42.28

[0.56,0.85] [0.11,0.46] (0.87) [0.47,0.81] [0.24,0.70] (0.00)

46 1.00 0.23 0 14.64 142 0.24 0.24 0 19.82

[0.74,1.00] [0.00,0.82] (0.29) [0.01,0.62] [0.01,0.62] (0.00)

57



Table 8: Individual level structural parameter estimates. Values in square
brackets are bootstrapped 95% confidence intervals. Values in parentheses
are the proportion of bootstraps in which ψ = 1. λ is the goodness of fit
parameter, where higher values indicate a better model fit.

ID χH χR ψ λ ID χH χR ψ λ

47 0.22 0.22 0 18.33 143 0.42 0.41 0 11.81

[0.00,0.77] [0.00,0.48] (0.02) [0.00,0.73] [0.00,0.60] (0.01)

48 0.41 0.41 0 13.37 144 0.00 0.00 0 4.98

[0.00,0.86] [0.00,0.66] (0.02) [0.00,0.41] [0.00,0.23] (0.02)
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Private good base value (D0): 0 30 70

Public Good frequency:

Static 0.835 0.645 0.283
(standard error of mean) (0.012) (0.015) (0.015)

Dynamic 0.836 0.672 0.359
(standard error of mean) (0.008) (0.011) (0.011)

Loss frequency (PG value < private good value):

Static 0.152 0.165 0.094
(standard error of mean) (0.012) (0.012) (0.009)

Dynamic 0.158 0.178 0.123
(standard error of mean) (0.008) (0.009) (0.008)

Table 6: Realized PG provision and overprovision for all treatments.
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Figure 8: Cumulative Density Functions of the midpoint of the cutoff intervals (see Sec-
tion 4.2). Vertical lines denote equilibrium predictions for Static Nash equilibrium, Dynamic
Nash equilibrium and Cursed equilibrium in navy, maroon and dark green, respectively.
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Private good base value (D0): 0 30 70

Public Good frequency:

Static actual (all periods 1-20) 0.835 0.645 0.283
(standard error of mean) (0.012) (0.015) (0.015)

Dynamic actual (all periods 1-40) 0.836 0.672 0.359
(standard error of mean) (0.008) (0.011) (0.011)

Dynamic actual (periods 1-20) 0.857 0.728 0.373
(standard error of mean) (0.011) (0.014) (0.016)

Dynamic actual (periods 21-40) 0.816 0.617 0.346
(standard error of mean) (0.013) (0.016) (0.015)

Loss frequency (PG value < private good value):

Static actual (all periods 1-20) 0.152 0.165 0.094
(standard error of mean) (0.012) (0.012) (0.009)

Dynamic actual (all periods 1-40) 0.158 0.178 0.123
(standard error of mean) (0.008) (0.009) (0.008)

Dynamic actual (periods 1-20) 0.169 0.188 0.125
(standard error of mean) (0.012) (0.013) (0.011)

Dynamic actual (periods 21-40) 0.147 0.169 0.122
(standard error of mean) (0.011) (0.012) (0.011)

Table 7: Realized PG provision and overprovision for 20-period ranges in all
treatments.

D Experiment Instructions (submitted for on-

line publication only)

This section consists of the experimental instructions. Differences between

the dynamic and static treatments are highlighted in bold. Note that the

numerical examples included in the instructions were the same across both

treatments, and also the same for all subjects.
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D.1 The instructions

EXPERIMENT INSTRUCTIONS PART ONE

Overview

This is an experiment in the economics of decision-making. The amount

of money you earn depends partly on the decisions that you make and thus

you should read the instructions carefully. The money you earn will be paid

privately to you, in cash, at the end of the experiment. A research foundation

has provided the funds for this study.

There are two parts to this experiment. These instructions pertain to Part

1A of the experiment. Once Part 1 is complete, the instructions for Part

2 will be distributed. Part 1 of the experiment is divided into many decision

“periods.” For Part 1, you will be paid your earnings in one, randomly selected,

period. The period for which you will be paid shall be announced at the end

of the experiment. Each decision you make is therefore important because it

has a chance to affect the amount of money you earn.

In each decision period you will be grouped with two other people, who are

sitting in this room, and the people who are grouped together will be randomly

determined each period. You will be in a “matching group” of twelve people.

You will only ever be matched with other people in the same “matching group”

as yourself, which means that there are at most eleven other people you could

be matched with each period.

You will make decisions privately, that is, without consulting other group

members. Please do not attempt to communicate with other participants in

the room during the experiment. If you have a question as we read through

the instructions or any time during the experiment, raise your hand and an

experimenter will come by to answer it.

Your earnings in Part 1 of the experiment are denominated in experimental

dollars, which will be exchanged at a rate of 10 experimental dollars = 1 U.S.

dollar at the end of the experiment.

Your Decisions

Part 1A of the experiment consists of 40 periods. (20 periods for static

treatment)
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In each period, you will choose whether to receive earnings from the group

project or you may instead choose to receive earnings from your private project.

You will receive earnings either from the group or the private project, and

never from both projects. Everyone in your group each period will make a

similar decision. If you choose the group project, you only will receive earnings

from the group project if at least one other person in your group chooses the

group project. If you are the only one choosing the group project, then you

receive earnings from the private project instead. The details of your earnings

for these decisions are described below.

Group Project

In each period, a random number will be selected by the computer for

you from a uniform distribution between 0 and 100. The uniform distribution

means that the 101 possible values 0, 1, 2, ..., 99, 100 are equally likely.

We will call this random number your signal. Each other member of your

group will also get a signal randomly selected by the computer from this same

distribution. We will call the signals of the three group members S1, S2 and

S3. All signals are drawn independently, which means that no drawn signal

can have any influence on any other signal draws. During each period, you

will not observe the signals of the other members. Similarly, other members

of the group will not observe any signal other than their own.

If you choose the group project, and if at least one other member of your

group also chooses the group project, then you receive earnings that are equal

to the sum of the signals of all three members of your group. We will call the

sum of the signals of the three members of your group the value of the group

project, or V :

V = S1 + S2 + S3

So, for example, if your signal is 50 and the other members of your group

get signals of 25, and 86, then the sum of all three signals is:

V = 50 + 25 + 86 = 161

Thus, in this case, if you chose the group project and at least one other

member of your group also choses the group project, then you would get 161

experimental dollars for that period.
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If you choose the group project, but no other members of your group

also choose the group project, then you receive earnings from your private

project instead for that period. (In other words, if less than two of the three

members of your group (including yourself) choose the group project, then

all group members receive earnings from their private projects that period.)

These private project earnings are described next.

Private Project

In each period, the baseline value of your private project is 70. This num-

ber is predetermined (i.e. not random) and is the same for all three members

of your group. In each period, in addition, two random numbers will be se-

lected by the computer for you from a uniform distribution between 0 and 100.

We will call these two draws D2 and D3. These two numbers are drawn inde-

pendently and will determine your earnings from the private project. (Other

group members will receive their own random numbers, independently drawn,

for their private projects.)

Like the group project, your private project value (P) comes from the sum

of three values:

P = 70 + D2 + D3

You will only know the baseline value of 70 before you make your decision.

So, for example, if the other two drawn values that you did not learn are D2=6

and D3=46, then your earnings from the project would be

P = 70 + 6 + 46 = 122

You will receive these private project earnings if either (1) you choose the

private project or (2) you are the only person in your group who chooses the

group project.

Note that at the time of your choice, you only observe your own signal

(S1, S2 or S3) of the group project value and the baseline number, 70, that

determines part of the value of your private project. This is illustrated in your

decision screen shown in Figure 9.

Three Choice Stages

You and other group members will have an opportunity to choose the group

project in 3 sequential stages each period. If you choose the group project in

63



Figure 9: Decision Screen

an early stage you cannot switch to choose the private project instead in a

later stage. But if you choose the private project in an early stage you can

switch your choice to the group project in a later stage.

In Stage 1, everyone will make a first choice between the group and private

project before learning the decisions of other group members.

In Stage 2, everyone will learn how many group members chose the group

project in Stage 1, and those who have not yet chosen the group project may

then switch to the group project. This is illustrated in Figure 10.

In Stage 3, everyone will learn how many group members chose the group

project in Stages 1 and 2, and those who have not yet chosen the group project

may then switch to the group project.

Note: The above Three Choice Stages subsection was included

for only the dynamic treatment. In the static treatment this was

replaced with the following paragraph, and Figure 10 was omitted.

You and the others in your group, will make your decisions at
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Figure 10: Second Stage to Choose the Group Project

the same time. In other words, everyone in your group makes their

choice before learning the choices of other group members.

End of the Period

After all members of your group have made their choices, you will learn the

values of the group project (V) and the private project (P), and your earnings

in experimental dollars for the period. You will also learn how many other

members of your group chose the group project, and the other two D2 and D3

draws that determine the private project value P.

As illustrated in Figure 11, your computer will also display at the end of

the period a summary of the results from all previous periods in this part of

the experiment, in a table you can scroll through if desired.

Remember that you will be randomly and anonymously re-matched into

new groups of three at the start of each period. Also remember that signals

for the group project and the D2 and D3 draws for the private project are

randomly and independently drawn for each member of your group.

Of the 60 periods in Part 1, one will be randomly selected for payment.
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Figure 11: Results Screen

All participants will be paid their earnings converted to US dollars for the

randomly selected period, plus a $5.00 show-up payment. You will not find

out which period you will be paid for until the end of the experiment, so you

should treat each period as something for which you might get paid. You will

not be paid for the periods that are not randomly selected for payment.

Summary of Part 1A

In each period:

� The value of the group project is given by V = S1 + S2 + S3. You will

observe your own signal, but not the signals of the other members of

your group.

� The value of the private project is given by P = 70 + D2 + D3. You

will observe the baseline value 70 but not D2 or D3.

� Static treatment only: You and others in your group make your

choice for the group project or private project at the same time,

before learning the choices made by any other group members.

� Dynamic treatment only: You may choose the group project
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in one of three stages. After choosing the group project in a

period you cannot switch back to choose the private project.

But if you do not choose the group project in the first stage,

then you may do so in the second stage. If you do not choose

the group project in the first or second stage, you may do so in

the third stage. At each stage, you will observe how many of

your group members chose the group project in a prior stage.

� If you chose the group project, and at least one other member of your

group also chose the group project, then you will earn V (the value of

the group project).

� If you do not choose the group project, or you are the only member of

your group who chose the group project, then you will earn P (the value

of the private project).

� At the start of each period, you will be randomly and anonymously

matched into groups of three. At the start of each later period, you

will be randomly and anonymously re-matched into new groups of three

and you never learn the identities of the other group members in any

period. It is possible, but unlikely, that you may be grouped with the

same people in two consecutive periods.

Are there any questions before we begin the experiment?

Distributed separately at the end of the session:

EXPERIMENT INSTRUCTIONS PART TWO

Part 2 will consist of two periods of decisions. You will be paid, in exper-

imental dollars, for the sum of your earnings in both periods. At the end of

the experiment we will convert the experimental dollars you earn in part 2 to

U.S. dollars at an exchange rate of 50 experimental dollars equals $1.

In each period, the computer will randomly draw an integer from a pre-

specified interval. The interval with either be from 0 to 99, or from 20 to 129.
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Each number in the interval will be equally likely to be chosen. In each period,

you will be required to submit a bid to the computer.

If your bid is greater than or equal to the random number, you will receive

100 experimental dollars, plus 1.5 times the random number, minus your bid.

If your bid is less than the random number you will receive 100 experimental

dollars.

If, for example, you bid 42:

� Suppose the value of the random number is 36. Then your payoff will

be 100 + 1.5*36 - 42 = 112.

� Suppose the value of the random number is 20. Then your payoff will

be 100 + 1.5*20 - 42 = 88.

� Suppose the value of the random number is 67. Then your payoff will

be 100.

Your results from each period will be displayed on the screen.

Are there any questions before we begin part 2?
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