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Abstract

We develop a model of learning that extends the classic models of reinforcement

learning to a continuous, multidimensional strategy space. The model takes ad-

vantage of the recent approximation methods to tackle the curse of dimensionality

inherent to a traditional discretization approach. Crucially, the model endogenously

partitions strategies into sets of similar strategies, and allows agents to learn over

these sets which speeds up the learning process. We provide an application of our

model to predict which memory-1 mixed strategies will be played in the indefinitely

repeated Prisoner’s Dilemma game. We show that despite allowing the mixed strate-

gies, strategies close to the pure strategies always defect, grim trigger, and tit-for-tat

emerge – a result that qualitatively matches recent strategy choice experiments with

human subjects.
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1 Introduction

Reinforcement learning has a long history as a model of behavior in social sciences and economics.

Indeed, early formulations of the underlying principle, known as the “Law of Effect,” go back to

Thorndike (1898). It states that probability of implementing a strategy will increase (decrease) with

the success (failure) of that strategy. While early reinforcement learning models were formalized

in the cognitive psychology literature (e.g., Bush and Mosteller, 1955), they have gained traction

in economics by the 1990s when several variants of reinforcement learning models were applied

to explain behavior in individual choice (Arthur, 1991) as well as strategic games experiments

(Mookherjee and Sopher, 1994; Roth and Erev, 1995; Mookherjee and Sopher, 1997; Erev and Roth,

1998).1 In addition, a more general experience weighted attraction (EWA) model was proposed by

Camerer and Ho (1999) which combines reinforcement and belief learning models.

One of the major shortcomings of the reinforcement and EWA models as applied in the early

papers, is that agents learned about stage-game strategies.2 Because of this, more complex behav-

iors exhibited in human subject experiments, such as tit-for-tat in repeated Prisoner’s Dilemma

or alternations in the Battle of Sexes were hard to achieve. To overcome this issue several papers

took an approach in which subjects reinforced behavioral rules and simple repeated-game strategies

instead of stage-game strategies. In particular, Stahl (1996, 1999) propose a general framework in

which behavioral rules are reinforced based on their performance. The authors show that level-k

type behavioral rules are good at explaining the data from human subject experiments (Stahl,

2000; Haruvy and Stahl, 2012). In the same spirit, Hanaki, Sethi, Erev, and Peterhansl (2005)

propose to reinforce repeated-game strategies specified by two-state automata and Ioannou and

Romero (2014a,b) generalize it to belief learning frameworks, including EWA.3 One difficulty of

learning over behavioral rules and repeated game strategies is that the set of possible strategies is

often large or infinite. The above papers have solved this problem by selecting a small number of

reasonable strategies as the learning domain. In this paper we propose a model that endogenously

partitions strategies into sets of similar strategies, and agents learn over these sets. This allows us

to considerably expand the set of strategies in the learning domain (including multidimensional,

continuous strategy sets).

We extend the reinforcement learning literature in economics in two important ways. First,

agents in our model learn about sets of strategies rather than individual strategies. That is, we

partition the set of strategies into subsets and agents learn the “propensities” of those subsets

through a reinforcement process. This allows us to work with large and continuous strategy spaces,

rather than having to predefine a finite set of strategies as an input to the learning process. Second,

1It is interesting to note that some of the very first economics experiments were done by trained psychologist
Sydney Siegel (Smith, 2017). Siegel (1961) used a reinforcement learning formulation of Bush and Mosteller (1955)
as a model of human behavior.

2For example, Camerer and Ho (1999) note that “Incorporating a richer specification of strategies is important
because stage-game strategies are not always the most natural candidates for the strategies that players learn about.”

3The approach of learning about repeated-game strategies rather than stage game strategies has also been used
in combination with evolutionary learning models such as genetic algorithm (e.g., Romero and Rosokha, 2019).
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the partition is endogenously refined over time so as to provide more “resolution” in the neigh-

borhood of the strategy space in which the propensities change the most. Specifically, we adopt

a recent method on function approximation from the machine learning literature called adaptive

tile coding (Whiteson, Taylor, Stone, et al., 2007). Combined, the two developments allow the

agents to learn over a continuous, multidimensional set of Markov strategies and overcome the

curse of dimensionality inherent to the traditional discretization approach.4 In addition, the two

components of the model provide distinct ways in which agent sophistication can be incorporated

into the learning process. In particular, sophistication can be captured by the precision with which

propensity differences are evaluated or by the number of partition refinements that agents make.

While the former is common to quantal response models (e.g., McKelvey and Palfrey, 1995), the

latter is a new development which maps to agent’s ability to differentiate between strategies in the

strategy space.

We use our model to study learning in the indefinitely repeated Prisoner’s Dilemma game. In

particular, agents learn over the infinite set of memory-1 Markov strategies. A strategy in this

set can be represented as a five-dimensional vector with entries corresponding to the probability of

cooperation in the first period and after each of the four possible memory-1 histories. Many learning

models have studied mixed-strategies in games with a unique mixed-strategy Nash equilibrium (e.g.,

Mookherjee and Sopher, 1994; Erev and Roth, 1998; Selten and Chmura, 2008). These papers

look at action-learning models and show that these models match experimental choice frequencies.

However, not as much attention has been devoted to learning over repeated game mixed-strategies,

which have been investigated theoretically and empirically. In particular, Ely and Välimäki (2002);

Bhaskar, Mailath, and Morris (2008) show the existence of memory-1 Markov Perfect Equilibria in

mixed strategies that cover the range of all folk theorem payoffs. Recent work by Breitmoser (2015)

shows that human subjects play mixed strategies in the indefinitely repeated prisoner’s dilemma.

In this paper, our goal is to develop a learning model to handle continuous sets of repeated-game

strategies like those mentioned above.

Simulations from our model lead to two main results that relate to regularities observed in

human subject experiments. The first result is that agents in our simulations learn to cooperate

if they are sufficiently sophisticated. This result relates to several studies that have documented a

positive effect of intelligence on cooperation in repeated Prisoner’s Dilemma. For example, Jones

(2008) survey 36 studies of repeated Prisoner’s Dilemma ran between 1959 and 2003 and find

that students in universities with higher average SAT scores cooperate more often. In a recent

experiment, Proto, Rustichini, and Sofianos (2017) split subjects in groups based on a measure of

intelligence and find that groups with higher intelligence are more likely to cooperate. The second

result is that agents learn to play strategies that are close to always defect (ALLD), grim trigger

(GRIM), and tit-for-tat (TFT). These three strategies are central to the experimental literature

on indefinitely repeated Prisoner’s Dilemma games (Dal Bó and Fréchette, 2018). The second

4For example, consider the spaces of memory-1 mixed strategies which can be represented as a 5-dimensional cube.
Even a relatively coarse discretization of 10 points in each dimension would lead to 100,000 strategies.
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result is particularly striking because the three strategies arise despite allowing for a continuous,

multidimensional set of repeated-game mixed strategies.

The rest of the paper is organized as follows: In Section 2, we provide details of the adaptive

reinforcement learning model and present an illustrative example using a two dimensional set of

strategies, which nests ALLD and GRIM. Then, in Section 3, we present our main simulation

results using memory-1 Markov strategies. Finally, in Section 4, we provide concluding remarks

and discuss avenues for future research.

2 Adaptive Reinforcement Learning

There are two main components of the adaptive reinforcement learning model. The first component

(Section 2.1) is that agents learn values (i.e., propensities or attractions) corresponding to a set of

strategies rather than values corresponding to individual strategies as done in the prior literature

(e.g., Roth and Erev, 1995). In particular, the set of all strategies is partitioned into “tiles,”

where a tile refers to one subset from the partition. The agent will not discriminate among the

strategies within a tile, rather any strategy chosen from the tile will lead to reinforcement of that

tile. Thus, the agent will approximate the value of playing a particular strategy based on the

value of the tile that it falls into. The second component (Section 2.2) specifies how the partition

changes over time. Specifically, we build on a recent approximation method called adaptive tile

coding (Whiteson, Taylor, Stone, et al., 2007). The method begins with a coarse partition which

contains only one tile (i.e., the whole strategy set). As the agent learns, the partition is refined

over time. The key questions of the refinement process are when and where to refine the partition.

The broad answers to the two questions are – the partition will be refined when the learning with

that partition has converged and the refinement will be chosen as to maximize the improvement in

the value function. We augment the algorithm by adding a sensitivity parameter, which leads to a

more precise refinement of the partition.

2.1 Reinforcement Learning Over Sets of Strategies

The reinforcement learning aspect of the model relies on three elements:

• Strategy Set Partition. Let S be the set of strategies that an agent considers, P be the

partition of that set, and T ∈ P be a tile (element of the partition). Instead of individual

strategies being assigned a value, all strategies in the same tile of the partition will have a

common value. Thus, an agent will keep track of the tile values V (T ) ∀T ∈ P . Prior to any

interaction taking place we will initialize all values to be V0(T ) = v ∀T ∈ P , where v is the

lowest possible payoff from the stage game for that agent.

• Strategy Selection. Before each supergame begins, an agent picks a strategy s ∈ S to be

played in that supergame. The strategy is chosen in two steps. First, a tile T is chosen based
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on the tile values and the choice function. Specifically, a tile will be selected using the logit

choice function (also know as Boltzman or softmax):

pt(T ) = eλ
sVt(T )/

∑
t∈P

eλ
sV (t),

where λs is the precision parameter capturing sensitivity to the payoffs. In particular, as λs

increases the agent will be more likely to select the tile with the higher value. Second, a

strategy s will be selected uniformly from the chosen tile so as to provide an approximation

of the average value of the tile. The advantage of this approach is that all strategies in the

set have some likelihood of being chosen.5

• Reinforcement. The last element is the reinforcement (or updating) rule. We choose an

exponential recency-weighted average rule. Specifically, suppose in supergame t, player i plays

s ∈ T and receives a per period payoff of x, then the tile values will be updated according to

Vt+1(T ) = (1− α)Vt(T ) + αx (1)

where α determines forgetting. The value of all other tiles will remain the same from su-

pergame t to t+ 1.

Note that if the strategy space is discrete and the partition is such that there is only one strategy

in each tile, then the above model reduces to the reinforcement learning over strategies - a model

similar to Hanaki, Sethi, Erev, and Peterhansl (2005).

2.2 Adaptive Refinement of Sets of Strategies

The agent learns with a given partition until the values of the tiles have converged. Once converged,

the agent will refine the partition by selecting one of the tiles to be split. To help with the refinement

process the method maintains and reinforces subtiles. Importantly, subtiles are not used in the

strategy selection process. Instead, subtiles keep track of which neighborhood of the strategy space

may benefit from refinement. Next we describe three elements of the refinement process:

• Convergence Criteria. We use the convergence heuristic proposed by Whiteson, Taylor,

Stone, et al. (2007). Every time a tile is updated, there is a change in the value of that tile,

∆(T ) = |Vt+1(T ) − Vt(T )|. Let ∆min(T ) be the smallest change that has occurred on this

tile since the last refinement. The heuristic keeps track of the number of supergames since

∆min(T ) was updated for any of the tiles. If u consecutive supergames fail to produce a

change to ∆min(T ) then the learning has converged. The heuristic works because once the

5An alternative approach would be to choose strategies from the vertices of the tile. The advantage of this
approach is that it speeds up the simulations because some vertices are picked multiple times and hence the value of
their interaction can be stored for future use.
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learning starts leveling off it will take longer and longer between updates to ∆min(T ).6

• Refinement Selection. At any given point in the simulation we will have a partition of

the strategy space which consists of tiles. For each tile in the partition, we will maintain

one subtiling for each dimension of the strategy space. A subtiling is a partition that divides

the parent tile in half on one dimension, and consists of two subtiles. Values of subtiles are

initialized and updated in the same way as values of tiles. After the convergence criteria has

been satisfied (on the values of the tiles, not the subtiles), we find the subtiling the has the

largest difference in value between the two subtiles.7 We then select the tile containing this

subtiling and the dimension corresponding to this subtiling for refinement. Thus, the agent

will devote more “resolution” to the region of the strategy space where V changes the most.

• Refinement Precision. A novel feature that we add to the adaptive tile coding is that we

allow the selected tile to be split anywhere along the chosen dimension based on the difference

of values of the two subtiles. In particular, we rely on the logit choice function with precision

parameter λr, to guide the split process. In particular, if the subtiles have values st1 and st2

the tile will be split in proportion eλ
rst2 : eλ

rst1 . For example, if λr > 0 then the agent will

split closer to the boundary corresponding to the subtile with the higher value. Alternatively,

if λr = 0, then the agent will split in the middle, corresponding to the rule in Whiteson,

Taylor, Stone, et al. (2007). Thus λr captures agent’s sensitivity to the payoff during the

refinement step, which is similar to the role of λs for the strategy selection step.

2.3 2D Example

To demonstrate the model on an example, we will simulate a population of 50 agents that use

adaptive reinforcement learning with λs = 1.50 and λr = 0.15. The agents play the indefinitely

repeated Prisoner’s Dilemma with continuation probability δ = .95 and the stage game payoffs

presented in Figure 1a. For this example, we will restrict our attention to a set of Markov strategies

of the form σ = (p1, p1, p2, p2, p2), where p1, p2 ∈ [0, 1]. That is, we consider a two-dimensional

strategy set:

• Dimension 1: probability of cooperation in the first period and after CC.

• Dimension 2: probability of cooperation after CD, DC, and DD.

We chose this example for several reasons: First and foremost, the set of strategies is two

dimensional which allows us to visualize the partition and the learned values. Second, the set is

6As an example of this heuristic consider learning about the mean of a standard normal distribution starting with
an initial guess of -5. Each iteration we randomly draw from this distribution and update our guess. In the beginning,
when we randomly draw from the distribution, ∆min will likely be large because most draws will have values greater
than -5. However, as our estimates get closer to 0, ∆min will get smaller and it will take longer to achieve new ∆min.

7We only consider tiles that have been visited a minimum number of times (30 in our simulations). This ensures
that differences between values of subtiles are based on large enough sample. As a consequences, this means that
tiles that are not visited due to low values are not likely to be refined.
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continuous and, therefore, is not a trivial application of the existing models. Third, the set nests

ALLD and GRIM (see Figure 1b) – strategies that have been central to game theoretic analysis of

the indefinitely repeated games. Finally, the chosen parameters have been used in recent strategy

choice experiments by Romero and Rosokha (2018) in which majority of human subjects learned

to cooperate.

Figure 1: 2D Example Setup

(a) Stage-game Payoffs (b) Strategy Set

p1

C

C

32,32

D

12,50

D 50,12 25,25

0 1
p1

1
0

p
2

ALLC

GRIMALLD

Notes: (a) Stage-game payoff parameters. Probability of continuation is set to δ = 0.95. (b)

The unit rectangle represents the 2D set of strategies of the form σ = (p1, p1, p2, p2, p2), where

p1, p2 ∈ [0, 1]. Three strategies are marked with gray dots are always defect (ALLD), grim

trigger (GRIM), and always cooperate (ALLC).

Figure 2 presents the first three refinement steps of the adaptive reinforcement learning process

for one agent in our simulations. The first step involves initialization of the partition, P0, and the

two subtilings (one in each dimension).8 Notice that as a starting point we chose the most general

case in which the partition consists of only one tile that encompasses the whole set of strategies.

Using the initial partition we proceed with learning over sets of strategies as described in Section

2.1. Specifically, the agent begins by selecting a strategy for supergame 1. For this example, the

randomly chosen strategy is (0.73, 0.16) and the average per period payoff from playing this strategy

against one other randomly selected agent is 29.4. In the figure, we mark the selected strategy with

a black dot. The payoff is then used to reinforce the value of the tile from which the strategy was

selected. In addition, the value of the subtiles that strategy falls into are reinforced. At this point,

the convergence criteria is checked, and since it is not satisfied, the learning proceeds to supergame

2.

The agent continues with partition P0 until the learned value has converged (supergame t1).

Once converged, the decision needs to be made as to where to refine the partition. To determine

which tile will be split we will use the learned values of the subtiles. In the example, the learned

values of the subtiles in dimension 1 are 25.6 and 25.2; and the learned values of the subtiles in

8In general, for k tiles there are 2× k× d subtiles. Thus, although the number of subtiles increases in the number
of dimensions, the increase is not exponential.

6

Electronic copy available at: https://ssrn.com/abstract=3350711



dimension 2 are 23.3 and 28.0. Since the difference in the latter subtiling is greater, the agent will

split the tile along dimension 2 (highlighted in red). Once the tile and the dimension have been

chosen, the agent needs to determine the precision of the split. In our implementation, the split is

determined by the refinement precision parameter λr described in Section 2.2. Specifically, for this

example, λr = 0.15 which leads to e(0.15∗23.3) : e(0.15∗28.0), which is roughly 1
3 : 2

3 split.

There are a couple of additional points worth noting regarding the split. First, during a split,

the values of the newly created tiles are set to be the value of the tile that was split, and the values

of all other tiles a kept the same. For example, after the initial split, the value of both tiles in P1

are set to be 25.6, which was the value of the tile in P0. This leads to the two tiles having equal

likelihood of being selected during the strategy selection step for supergame t1 + 1. Second, values

of newly created subtiles are set to the lowest possible payoff for the stage game for that agent,

while the values of all other subtiles stay the same. For example, after the second split, values of

subtiles corresponding to the tile that wasn’t split remained the same, but the values of the new

tiles were initialized to 12.0. Thus, the tile values are used only during the reinforcement step of

the model, while the subtile values are used only during the refinement step of the model.
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Figure 2: 2D Example: Step-by-step
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Converged?
8
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..
.
..
.

t1 (0.81, 0.47) 29.8 25.6 25.225.6

23.3

28.0

Converged?
4

Refine

Continue with P1

P1

25.6

25.6

12.012.0

12.012.0

12.0

12.0

12.0

12.0

t1 + 1 (0.7, 0.79) 19.0
25.2

25.6

12.312.0

12.012.0
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8

Continue with P1
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t2 (0.73, 0.28) 30.8
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...

Notes: An example of the first two refinements. Tiles and their values are in black. Subtiles and their

values are in gray. Strategies chosen for each supergame are marked with black dots within the tiles

and subtiles. The chosen split at each refinement step is highlighted in red.
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Figure 3 presents evolution of cooperation and four examples of the learned partitions through-

out the simulations. In terms of cooperation, agents initially start out by playing randomly, but

then quickly learn to defect after CD, DC, and DD histories. This results in the low cooperation

around supergame 103. What is striking is that the low cooperation is achieved with only 4 tiles.

As the learning progresses agents learn to play strategies closer to ALLD. This can be seen in the

figure as the most likely strategies (highlighted in red) for supergame 104 are close to the bottom-

left corner of the strategy space, which correspond to ALLD. Notice that at this point, the partition

consists of 20 tiles, with much finer tiles around ALLD and along the ALLD-GRIM (bottom) edge.

Once agents have learned to defect, they slowly start to transition to playing strategies closer to

GRIM. This can be seen in the figure as the most likely strategies around supergame 105 are mixed

strategies along the ALLD-GRIM (bottom) edge. Finally, by supergame 106 subjects have learned

to cooperate by playing strategies close to GRIM.

Figure 3: 2D Example: Evolution of Cooperation

100 101 102 103 104 105 106

Supergame
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Partition

Notes: Top: Number of tiles in the partition. Middle: Strategies that are likely to be chosen. Tiles

in the top 50 percentile are highlighted in red. Next 40% are highlighted in orange. Bottom 10%

of tiles are in gray. Bottom: Average cooperation rate throughout the simulation horizon. Right:

Partition after 106 supergames. The unit rectangle represents the 2D set of strategies of the form

σ = (p1, p1, p2, p2, p2), where p1, p2 ∈ [0, 1].
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Right panel of Figure 3 shows the final partition after 1 million supergames for one of the

agents in our simulation. At this point of the learning process the partition contains 263 tiles. This

partition contains parts that are very fine and others that are very coarse. The bottom left and

bottom right corners of the strategy space are both very fine as those correspond to commonly

studied strategies ALLD and GRIM. The top of the strategy space is very coarse (the top 75% is

a single tile). This area contains strategies that cooperate with high probability after CD and DD,

which means that they are easily exploitable, and will likely lead to a low payoff, and hence a low

value for the corresponding tile. Since this tile has a low value and will not be visited a lot, is is

unlikely to be refined (due to the minimum number of visits requirement). The tile in the bottom

right near GRIM has an approximate height of .002 and approximate width of .001. To achieve

such a fine partition with a discrete grid would require about 1000 points in one dimension and 500

in the other, which translates into 500,000 strategies and makes the learning process prohibitively

slow.

3 Results

We apply adaptive reinforcement learning to the indefinitely repeated Prisoner’s Dilemma game.

In particular, we present the simulation results when the set of strategies consists of all memory-1

Markov strategies. This set of strategies can be represented as a 5-dimensional cube with each

element represented by a vector of the form σ = (p1, p2, p3, p4, p5), where pi ∈ [0, 1]. Our focus is

two-fold: First we are interested in whether agents can learn to cooperate. And second, we are

interested in which among the Markov strategies are being played.

Figure 4 presents the evolution of cooperation for different values of λs = λr = λ. We find that

as λ increases the agents in our model are more likely to discover cooperation. Notably, parameter

λ captures the level of sophistication of the agent. Which, in our context, would mean that agents

with higher sophistication learn to cooperate, while agents with lower sophistication learn to defect.

This results relates to prior findings from the experimental literature (e.g., Proto et al. 2018) who

find that subjects with higher IQ are more likely to cooperate.
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Figure 4: Evolution of Cooperation with Markov strategies
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Next we turn to strategies. We present the resulting distribution of strategies on the following

domain: persistence-in-C x reciprocity-in-C. Where, persistence-in-C is measured as the difference

between fraction of the time C is played after CC and fraction of the time D is played after CD.

That is, we find the likelihood that a subject will maintain mutual cooperation less the likelihood

that a subject will retaliate for defection. Reciprocity-in-C is measured as difference between the

fraction of time C is played after DC and the fraction of time C is played after DD. That is, we

find the likelihood that a subject will reciprocate with cooperative behavior less the likelihood that

a subject will try to cooperate after mutual defection. We chose this domain because the key

strategies are distinct: ALLC is at (1,0); ALLD is at (-1,0); TFT is at (0,1); GRIM is at (0,0);

and finally, WSLS is at (0,-1). Figure 5a presents the strategy space while Figure 5b presents the

strategies obtained from a recent experiment by Romero and Rosokha (2018) projected on the same

space.
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Figure 5: Strategies in Experimental Data

(a) Strategy Space (b) Heat-map of Experimental Data
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Notes: (a) Strategy space. For strategy s = (p1, p2, p3, p4, p5), Persistence in C is equal to

p2 − (1− p3) and Reciprocity in C is equal to p4 − p5. (b) Experimental data is from Romero

and Rosokha (2018).

Figure 6 presents strategies that are played by agents in our simulations at three different time

points. In particular, we present a heatmap of strategies played at 103, 104, and 105 supergames.

We find that early on agents are more likely to play strategy close to ALLD, but later on strategies

that are most commonly played are close to GRIM and TFT.

Figure 6: Strategies During Simulations
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4 Conclusion

The two central ideas of the adaptive reinforcement learning model presented in this paper are i)

learning over sets of strategies rather than individual strategies; and ii) using a function approxi-

mation method to refine the set of strategies over time. In particular, the combination of the two

allows us to tackle learning with continuous, multidimensional strategy sets, such as memory-1

Markov strategies that have been of recent theoretical and experimental interest. We find that

agents learn to cooperate if they are sufficiently sophisticated. In terms of strategies: the three

strategies that regularly appear throughout the learning process are always defect, grim-trigger,

and tit-for-tat. These simulation results are qualitatively consistent with recent strategy choice

experiments.

There several interesting directions for future work. First, it would be interesting apply the

current model to different games. In particular, there are many games with continuous strategy

spaces, such as the Cournot duopoly model, that would be interesting to explore. Second, a question

remains as to how an agent may choose dimensions of the strategy space to speed up the learning

process. Third, while in this paper we considered the case of continuous sets, it would be interesting

to extend this approach to large but finite strategy sets, such as memory-2+ forgiving strategies

studied in Fudenberg, Rand, and Dreber (2012). In particular the challenge with strategies that

condition on longer histories is how to split the sets and how to choose dimensions on which to

split.
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Appendices

Appendix A Algorithm Test

To demonstrate the algorithm in a non-strategic domain, we apply it to learning the maximum of a normal

distribution with a mean 0.65 and a standard deviation of 0.025. Figure A-1 presents the results.
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Figure A-1: Learning maximum of a function with non-boundary Max

(a) Performance (b) 103 Draws (c) 104 Draws
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Notes: Normal distribution with mean of 0.65 and standard deviation of 0.025. Maximum value

is 15.96. (a) Running average of draw performance. (b) Function approximation after 103

draws. (c) Function approximation after 104 draws.

We find that agents accurately discover the maximum of the function after approximately 2000 draws. This can be seen

from Figure A-1a as the average performance plateaus near the true value. The performance is below the maximum of

the function due to the logit tile selection. Figure A-1b presents the learned values and the resulting approximation

after 1000 draws. We find that even with few partitions the algorithm does well in picking up which strategies

are likely to yield the highest payoffs. Figure A-1c presents the learned values and the resulting approximation

after 10,000 draws. We find that the improvement in approximation, but more importantly the maximum value is

discovered.
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