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Abstract

In response to growing abuse of prescription opioid painkillers, 50 U.S. states have

implemented electronic prescription drug monitoring programs (PDMPs) that record

patients into a state-wide registry when a prescription opioid is received. This paper

uses a difference-in-differences regression framework and interactive fixed effects factor

models to identify the effect of PDMPs and two related programs on the types and

strengths of opioid painkiller prescriptions filled and on rates of heroin crimes. The im-

plementation of PDMP databases caused an 8% decrease in the amount of oxycodone

shipments, with results from Medicaid prescription data pointing to larger decreases

within high dosage pills. PDMPs have heterogeneous effects on heroin crime incidents

across counties depending on the county’s pre-policy level of prescription opioid mil-

ligrams per capita, with an 87% increase in heroin crime within the most opioid-dense

counties.

1 Introduction

The United States is in the midst of an opioid drug epidemic, which the Center for Disease

Control has classified as a top public health concern, calling it “the worst drug epidemic in

US history.” An estimated 2 million Americans suffer from a prescription painkiller abuse

disorder and 470,000 suffer from heroin abuse.1 Skyrocketing overdose deaths have surpassed

fatal car accidents as the leading cause of accidental death and have contributed to the recent

1National Survey on Drug Use and Health: Summary of National Findings. Substance Abuse and Mental
Health Services Administration 2013.
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historic reversal in mid-life mortality among non-Hispanic white Americans documented in

Case and Deaton (2015).

In response to rising rates of opioid abuse and overdoses, lawmakers have legislated many

interventions designed to limit the supply of prescription opioids to those who would abuse

them while preserving access for legitimate users. Among these policies are prescription

drug monitoring programs (PDMPs); statewide systems that record patient controlled sub-

stance prescription histories into an online database accessible to prescribers. Using PDMPs,

doctors can identify patients who receive many overlapping prescriptions from several pre-

scribers, a practice called “doctor shopping.” The “non-mandated” PDMPs were available to

prescribers but did not legally require doctors to query them. A number of states later pass

additional usage mandates (referred to as “Mandates” from here on) to existing PDMPs,

which require practitioners to query the PDMPs in certain circumstances. This paper focuses

primarily on the effects of PDMPs in general, and controls for mandates. 2

Heroin is an inexpensive, chemically similar substitute for prescription opioid painkillers.

When opioid-addicted patients face additional obstacles in obtaining prescription opioids,

they may initiate heroin use. Heroin transition and substitution is an important secondary-

effect of supply-side interventions for policymakers to consider because in recent years heroin

is often laced with fentanyl, a powerful synthetic opioid which is the cause of many unex-

pected overdoses (Gladden, 2016). This paper examines the effect of the PDMPs on prescrip-

tion opioids, disaggregating by dosage strength of pill and examines heroin transition caused

by the PDMPs measured by heroin crime rates. I exploit staggered timing of PDMP imple-

mentation across states in a difference-in-differences framework to identify causal effects of

the programs on prescription and heroin crime outcomes.

This paper contributes to the literature on opioid supply-side interventions by showing

that PDMPs have large, significant effects on heavy opioid-abusers. I accomplish this by

using more disaggregated data than has yet been used in the PDMP literature, which allows

me to identify heterogeneous effects of the PDMPs on the dimension of dosage strength of

opioid pill and on the dimension of finer geographic detail on heroin outcomes. First, I

provide evidence that PDMPs significantly decrease access to strong prescription opioids.

Past work has shown that PDMPs reduce prescription oxycodone, but this paper is the first

to disaggregate prescription opioids by dosage of pill. I find that PDMPs decrease oxycodone

in the Medicaid population by 25%, which is driven by a 35% decrease in oxycodone in the

form of high-dose pills. Secondly, I show that heroin abuse, as measured by heroin crime

rates, increases significantly due to the PDMP in counties with high rates of opioids per

2Much of the recent PDMP literature– Buchmueller and Carey (2017), Dave et al. (2017), Deza and Horn
(2017), Meinhofer (2017)– focuses on usage mandates.
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capita. While PDMPs don’t have significant effects on heroin crime rates in the aggregate,

they increase the rate of heroin crime incidents by 87% in counties within the top 10% of

oxycodone per capita.

2 Background

Opioids are a class of natural and synthetic morphine-like drugs and include opium, mor-

phine, oxycodone, hydrocodone, fentanyl, and heroin. Opioid molecules bind to opioid recep-

tors in the body, relieving pain and sometimes creating a feeling of relaxation, well-being, or

euphoria. Opioids also slow breathing and heart rate, sometimes to the point of respiratory

failure in the event of an overdose. The most common prescription opioids are oxycodone

(the active ingredient in Percocet, OxyContin, and MS Contin) and hydrocodone (the active

ingredient in Vicodin and Lortab).3

2.1 History of the Opioid Crisis

The opioid crisis is commonly explained by increased access to prescription painkillers, be-

ginning with the dramatic rise of Purdue Pharmaceutical’s OxyContin in the mid-1990s.

OxyContin was marketed to prescribers as safe and non-habit-forming due to its slow-release

mechanism which prevented a sudden high and crash cycle that fosters withdrawal and depen-

dence. OxyContin was also unique because of Purdue Pharmaceutical’s aggressive marketing

approach, which heralded massive revenue growth from $48 million in 1996 to $3.1 billion in

2012. Purdue painted Oxycontin as a miracle drug for the common American with chronic,

non-cancer pain. Other opioid-producers followed suit, and the marketing was so effective

that a medical field formerly characterized by “opiaphobia” that sometimes went so far as

to deny opioid treatment to terminally ill patients now considers pain“the 5th vital sign,”

asking patients to rate their pain on a scale of one to ten after taking their blood pressure,

temperature, breathing and pulse.4

OxyContin contains the active ingredient oxycodone and pills range anywhere from a low

dose of 10 milligrams to a high dose of 80 milligrams (as well as the now-discontinued 160

milligram pill). The continuous-release mechanism of the pill was a patented wax coating,

but determined opioid abusers could dissolve away the coating or crush the pills into powder

in order to swallow, snort, smoke or inject a large immediate hit of the morphine-like drug.

3Oxycodone and hydrocodone make up the bulk of all opioid shipments in DEA’s Automation of Re-
ports and Consolidated Orders System (ARCOS) dataset, which tracks the universe of opioid shipments.
Oxycodone and hydrocodone also have the highest reported rates of abuse within the NSDUH.

4In 2001 the Joint Commission on Accreditation of Healthcare Organizations added the pain scale.
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With a rise in demand for opioids and doctors’ increased willingness to prescribe these

drugs, prescriptions for opioid pain killers increased as well. In 2012, 217 million opioid

prescriptions were written in the US–a 150% increase from 1995, which realized 87 million

opioid prescriptions.

2.2 Prescription Drug Monitoring Programs

As of 2017, 50 states have implemented PDMPs that track patients’ prescription histories

of controlled substances. Some states have tracked such histories for decades on paper,

often for use by law enforcement agencies, but this paper focuses on the establisment of

online, electronic drug histories that can be easily accessed by doctors. States set up online

databases between 2004 and 2016, and Table 1 shows the precise dates when states allowed

prescriber access. Many states began data collection 1-12 months before prescribers could

access the electronic PDMPs, creating a possible announcement effect.5

Due to low prescriber use of the PDMPs, 12 states6 implemented usage mandates on

top of existing non-mandated PDMPs that require prescribers to query the PDMPs under

certain circumstances. In addition, eight states7 have passed packages of laws designed

to stop over-prescribing at unscrupulous “pill mills”: pain clinics that are typically cash-

only and both prescribe and dispense opioid pills on site. These “Pill Mill Bills” often

include requirements that prescribers of painkillers register with state Departments of Health,

licensing requirements for pain clinics, or restrictions on in-office dispensing of painkillers.8

I control for the usage mandates and “Pill Mill Bills” in all of my models. Table 1 displays

dates of the usage mandates and “Pill Mill Bills.” There is not evidence to suggest that

states systematically implement both a PDMP and another policy like a Mandate or “Pill

Mill Bill” in the same quarter.

5Dates were obtained by searching the internet for effective dates of electronic, online PDMPs by state.
Most dates were verified using several sources, including news articles, the Prescription Drug Monitoring
Program Training and Technical Assistance Center website, the National Alliance for Model State Drug
Laws website, state legislative laws and bills, government newsletters, various articles from peer reviewed
journals, and pharmacy board websites.

6Delaware, Indiana, Kentucky, Louisiana, Maryland, Nevada, New Mexico, New York, Ohio Tennessee,
Vermont, and West Virginia

7Florida, Kentucky, Louisiana, Mississippi, Ohio, Tennessee, Texas, and West Virginia
8For an excellent study on the Florida pill mill crackdown, see Meinhofer (2016).
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2.3 Substitution to Heroin

Heroin and opioids are nearly identical at the chemical level9 and produce similar effects

in the body, acting as powerful pain suppressants and creating feelings of wellbeing and

euphoria in large doses. Ways of taking heroin have changed, with an increasing prevalence

for smoking and snorting because drug purity is now so high that injecting is not required for

an intense euphoria. Since many prescription opioid users previously crushed and snorted

or smoked oxycodone pills to get high, smoking or snorting heroin is an easy transition

(Frank, 1999; Hines et al., 2017). The heroin of the 2010s is produced in Mexico and South

America, is often nearly 100% pure, and costs $10 for a small 10 milligram capsule filled with

white powder. Disconcertingly, to improve potency most heroin is now laced with a strong

synthetic opioid called fentanyl, which is 50-100 times stronger than morphine. Inconsistent

amounts of fentanyl (or yet-more-potent fentanyl analogs) within heroin doses is the cause

of many unexpected overdoses.

According to the Center for Disease Control, only 3% of prescription opioid abusers

initiate heroin abuse, but 75-80% of heroin users report that they transitioned from abusing

prescription drugs. Partially due to the prevalence of users who transition from opioids

to heroin, the opioid crisis is now a socio-demographically wide-spread phenomenon, with

the most concentrated effects among white non-Hispanic Americans (Cicero et al., 2014). In

contrast, past drug crises like the heroin crisis of the 1970s and the crack epidemic of the 1980s

and 1990s had been concentrated among urban and minority populations. Prescription opioid

overdoses increased in the 2000s among middle-aged non-Hispanic white Americans, and

heroin and fentanyl overdoses skyrocketed in the 2010s among non-Hispanic white Americans

between ages 20 and 35 (Unick and Ciccarone, 2017). The opioid crisis is also geographically

widespread, affecting suburban and rural areas nationwide.

The transition from opioids to heroin is widely documented in small-scale research sam-

ples and surveys in the health and addiction literature (Lankenau et al., 2012; Siegal et al.,

2003), and wide-scale empirical studies linking prescription opioids and heroin have just re-

cently emerged (Alpert et al., 2017; Evans and Power, 2017; Kilby, 2015; Meinhofer, 2017).

This paper is unique among these in that I link non-mandated PDMPs to heroin transi-

tion, use heroin crime rates rather than heroin overdose deaths or treatment admissions as a

measure of heroin abuse, and perform my heroin analysis at the county level instead of the

usual coarser state level, with an emphasis on heterogeneous effects of the policy on heroin

transition in different types of counties.

9Different opioids have real chemical differences but have similar effects in the body, binding to the same
mu-opioid receptors (Drewes et al., 2013).
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2.4 Related Literature

Existing studies in the health literature draw varying conclusions regarding the efficacy of

PDMPs, with studies finding zero effects as often as significant reductions in opioid abuse

measures. However, one typically corroborated result is that PDMPs decrease prescription

oxycodone shipments (Kilby, 2015; Paulozzi et al., 2011; Reisman et al., 2009; Simeone and

Holland, 2006). Several authors find PDMPs without mandates affect Schedule II opioids

(oxycodone) and not Schedule III-V opioids (hydrocodone).10 Few studies that examine

the effect of the initial implementation of PDMPs use detailed prescription data, and most

use aggregated opiate shipments tracked by the DEA. One exception is Kilby (2015), who

uses a dataset of prescription claims from Truven Health Analytics that covers 59% of the

U.S. population. She finds that non-mandated PDMPs cause a 10% reduction in oxycodone

prescriptions, and also finds a 10% decrease in oxycodone shipments from the DEA’s ARCOS

dataset, which tracks aggregate shipments of opioids. Buchmueller and Carey (2017) utilize a

claims-level subsample of the universe of Medicare claims, and find no effect of non-mandated

PDMPs on abuse outcomes, likely because those 65 and up exhibit lower rates of opioid abuse

than the younger general population.

Results for the effect of non-mandated PDMPs on outcomes outside of prescription oxy-

codone are mixed. Some studies find a reduction in overdoses or poisonings in response to

PDMPs (Patrick et al., 2016; Reifler et al., 2012; Simoni-Wastila and Qian, 2012), whereas

other studies find no response in opioid abuse outcomes. (Brady et al., 2014; Buchmueller

and Carey, 2017; Dave et al., 2017; Bachhuber et al., 2016; Meara et al., 2016; Paulozzi et al.,

2011)). Deza and Horn (2017) find that non-mandated PDMPs established between 2007 and

2012 reduce crime rates.11 Because recent papers often find weak effects of non-mandated

PDMPs, the opioid literature in economics has turned its’ attention to PDMP mandates

that require doctors to access already-established PDMPs. Several recent studies find signif-

icant effects of PDMP usage mandates that require doctors to check already-existent PDMPs

(Buchmueller and Carey, 2017; Dave et al., 2017; Deza and Horn, 2017; Meinhofer, 2017).

Mandates are effective at reducing many abuse outcomes, including doctor shopping through

Medicare, substance abuse facility admissions, crime rates and fatal drug overdoses.

10Drugs receive a Schedule I-V rating based on medical usefulness and possibility of dependence, with
higher numbers meaning more benign and lower numbers more dangerous. Illicit drugs like heroin and
cocaine are Schedule I with little medical benefit and high potential for abuse. Some opiate painkillers
(fentanyl, oxycodone, morphine) are Schedule II; hydrocodone was Schedule III in the time period relevant
to this paper. Schedule III drug prescriptions can be refilled without making an appointment with a doctor;
Schedule II drugs cannot be refilled.

11Deza and Horn (2017) finds the effects of PDMPs and their Mandates on crime rates, with an emphasis
on violent crime and property crime. My paper focuses on drug crime, namely incidents involving the seizure
of heroin or diverted opioids.
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The economics literature has also begun to connect opioid abuse and heroin-substitution

outcomes. Studies by Alpert et al. (2017) and Evans and Power (2017) examine heroin

substitution in response to the 2010 reformulation of OxyContin. The reformulation made

OxyContin more difficult to crush, which is a primary step to snorting, smoking, or injecting

it to obtain a more intense high. Both sets of authors find dramatic increases in heroin

overdose deaths in the most opioid-dense states consistent with the timing of the reformu-

lation. In the PDMP literature, Kilby (2015), Meinhofer (2017), and Radakrishnan (2014)

have studied the effect of PDMPs on heroin overdoses and treatment admissions. All three

studies find limited effects of the non-mandated PDMP on heroin abuse outcomes, but do

not account for the possibility of heterogeneous effects within the population.

In contrast to other PDMP papers that focus on effects of the added mandates, I focus

on non-mandated PDMPs among high-abuse populations and geographical areas, and I

find evidence that suggests that non-mandated PDMPs have large effects among high-abuse

populations. In this paper I examine prescription outcomes in the Medicaid population,

whereas other papers have focused on the general population or Medicare populations.12

The CDC has long stated that the Medicaid population is at higher risk for opioid abuse

disorders, and this paper is among the first to focus on Medicaid prescription outcomes

in response to the PDMP. Past studies have shown that doctors who have patients from

high-abuse populations access and query non-mandated PDMP databases at higher rates

(Goodin et al., 2012; Irvine et al., 2014; Ross-Degnan et al., 2004), and my results suggest

these PDMPs have effects of a similar magnitude to mandated PDMPs among the Medicaid

population.

This paper also contributes to the recent economics literature covering opioid-to-heroin

substitution, by treating PDMPs as a source of exogenous variation in abusers’ access to

prescription opioids. Other studies estimate heroin use by admissions to substance abuse

treatment facilities or by death rates from heroin. I use a more detailed and informative

measure, namely an incident-level dataset of reported crimes, aggregated by county and

month, to measure the effects of PDMPs on heroin crime rates. Since other recent studies

only found weak or inconsistent links with heroin outcomes, I use more granular geographic

data to examine heterogeneous effects across counties, using the counties’ levels of pre-policy

opioid abuse, proxied by oxycodone milligrams per capita. To the extent that residents in

more opioid-dense counties are more likely to be heavy opioid users, an increase in heroin

12A 2017 paper in the health policy literature by Wen et al. uses the same Medicaid dataset, using years
2011-2014. The authors do not include robustness checks or test different specification strategies of their
difference-in-differences approach, nor do they provide evidence that parallel trends is supported. It is not
clear if standard errors were cluster-bootstrapped, which is likely necessary due to few states implementing
PDMPs between 2011 and 2014.
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crime within these counties would suggest that PDMPs are highly influential in the transition

to heroin use by those who heavily abuse prescription opioids.

2.5 Predictions of Policy Effects

PDMPs act as a negative supply shock for legally-obtained prescription opioids by making

it more difficult for abusers to obtain prescriptions. Former doctor-shoppers may turn to

the black market for diverted opioid prescriptions13 because illegally diverted opioids are

a substitute for legally prescribed opioids. The PDMP should therefore cause an increase

in demand for diverted illegally-obtained opioids. However, the supply of diverted opioids

available for purchase on the black market should also be affected by the PDMP because

much of the supply of diverted opioids is obtained by doctor shopping, which the PDMP

targets. Since the PDMP causes a decrease in supply as well as an increase in demand in

the black market for illegally-diverted opioids, quantity effects are ambiguous and it is not

clear whether police will encounter fewer or more illegal opioid crime incidents.

Heavy abusers who rely on doctor shopping to obtain their prescription opioids may

turn to another substitute, heroin, in response to the additional obstacles to prescriptions

posed by the PDMP. An increase in demand for heroin should mean police encounter more

incidents where heroin is involved after the PDMP is passed.

3 Data

3.1 Prescription Data: Medicaid State Drug Utilization Data

Table 2 lists summary statistics on frequency of prescription opioid and heroin abuse from

self reports in the National Survey on Drug Use and Health 1990-2014. The table is divided

into non-Medicaid respondents and Medicaid-enrolled respondents. I further divided the

data into all respondents, and respondents who report having ever used hydrocodone non-

medically, used oxycodone non-medically, and used OxyContin non-medically. Hydrocodone,

oxycodone, and OxyContin are presented in ascending order of potency and abuse potential.

Hydrocodone is a relatively weak Schedule III opioid typically prescribed for acute temporary

pain, and oxycodone is a stronger Schedule II substance used to treat moderate to severe

chronic pain. Most opioid crackdowns have focused on limiting oxycodone. About a third

(0.348) of oxycodone abusers report having used OxyContin, the slow-release formulation of

oxycodone that comes in large doses.

13In the NIBRS, an opioid is considered illegal or “diverted” when the individual in possession of the
opioid does not possess a prescription.
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Within the survey, Medicaid respondents are more likely to abuse opioids; and among

groups of hydrocodone, oxycodone and OxyContin abusers, Medicaid enrollees use opioids

more frequently than their non-Medicaid counterparts. The first column lists summary

statistics for the entire Non-Medicaid and Medicaid subsets of the data, including respon-

dents who do not abuse opioids. 11% of survey respondents not on Medicaid report having

ever abused opioids, and the average respondent in the non-Medicaid group reports abusing

opioids 2.029 times in the past year. Within the respondents who are Medicaid enrollees,

12.7% have ever abused opioids and the average respondent has abused opioids 3.30 times in

the past year. The second column restricts both the Non-Medicaid and Medicaid groups to

those who reported having ever abused hydrocodone. The average non-Medicaid abuser of

hydrocodone has misused opioids 20.19 times in the past year, compared to 28.89 abuses for

the average Medicaid counterpart. Abusers of oxycodone and OxyContin show the highest

rates of reported abuse: oxycodone abusers report misusing opioids 22.82 and 32.41 times a

year, in the non-Medicaid and Medicaid subsets respectively, and OxyContin abusers report

using 40.45 and 52.10 times respectively. Medicaid have both higher rates and frequencies of

reported heroin abuse than the non-Medicaid respondents. Those who abuse hydrocodone,

oxycodone and OxyContin are much more likely to report heroin use as well, with increasing

odds (8.4%, 11.4%, and 19.7% in the non-Medicaid population, and 10.8%, 14.6% and 23.4%

in the Medicaid-enrolled population) across opioid-strength categories.

Since Medicaid enrollees are more likely to abuse opioids than the general population, and

abuse increases across drug-strength categories, the Medicaid dataset used for this paper is

advantageous in revealing the true effects of the PDMP. I expect PDMPs disproportionately

affect heavy-abusers of opioids, so the Medicaid population provides a good chance of finding

large and significant policy effects.

Medicaid tracks the universe of prescriptions the program pays for and compiles the

information into aggregated reports on the Medicaid website in the Medicaid State Drug

Utilization Data. The Medicaid dataset on opioid pills covers 7-15% of all prescription

painkillers in the United States. The National Drug Code (NDC) is a unique product-

identifier that identifies each drug by its manufacturer, active ingredient, and dosage amount,

among other details. The Medicaid data report the state-by-quarter counts of each NDC

prescribed. I use the NDC to merge the Medicaid data to detailed information from the

Food and Drug Administration.14 For my analysis, I restrict my observations to tablets15

14Many of the NDCs for opioids found in the Medicaid data are outdated, so I manually searched for
records by NDC and obtained dosage and strength information on outdated NDCs from many different
websites.

15Tablets account for 79% of the NDCs in the opioid prescription dataset, and 69% of all quantities of
opioids given out. In addition to tablets, opioids come as solutions, syrup, and patches, mostly in the form
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of oxycodone and hydrocodone painkillers, the most commonly abused opioids. Patients

typically receive take-home opioid prescriptions in the form of tablets.16

Because the Medicaid data are reported at the NDC level, I aggregate milligrams by both

drug type and strength, differentiating drug milligrams that come in the form of low-dose

pills from those in high-dose pills. Opioid active ingredients have varying potencies, so I use

different milligram cutoffs for hydrocodone and oxycodone drugs. Oxycodone is 1.5 times

as strong as hydrocodone. I define a low-dose pill as a hydrocodone pill with 15 or fewer

milligrams of hydrocodone or an oxycodone pill with 10 or fewer milligrams of oxycodone. A

high-dose oxycodone pill contains greater than 10 milligrams of oxycodone, and a high-dose

hydrocodone pill contains more than 15 milligrams of hydrocodone. Hydrocodone is typi-

cally not found in pills with more than 15 milligrams.17 The 10 milligrams oxycodone/15

milligrams hydrocodone cutoffs were chosen because commonly-abused Percocet and Vicodin

have 10 or fewer oxycodone milligrams and 15 or fewer hydrocodone milligrams, respectively.

More dangerous pills like OxyContin, whose abusers exhibit more severe abuse characteris-

tics, have more than 10 milligrams of oxycodone.18

3.2 Drug Enforcement Agency ARCOS Data

The Drug Enforcement Agency tracks aggregate shipped amounts of controlled substances

through the Automation of Reports and Consolidated Orders System (ARCOS). These data

are recorded by state and quarter and by zipcode and quarter. I use the shipped quantites

of oxycodone and hydrocodone between 2000 and 2014 to supplement my Medicaid results

with data from the general population, as well as for comparison to other studies in the

literature that also use the ARCOS (Kilby, 2015; Reisman et al., 2009). The ARCOS data

provides more fine-grained geographical information at the zipcode and county level than dos

the Medicaid data, which is at the state level. I use ARCOS county oxycodone per capita to

obtain a proxy measurement for pre-policy opioid abuse within counties. The ARCOS data

are not at the NDC level of specificity, so I am not able to decipher dosage amounts (strong

versus weak doses) nor dosage form (tablets versus solutions usually given under medical

supervision) of the oxycodone and hydrocodone within the aggregate population data.

of codeine, a relatively weak form of opioid.
16Oxycodone and hydrocodone are the most commonly abused opioids (NSDUH) and the only opioids

the Drug Enforcement Administration has tracked for the entire time period between 2000 and 2015. There
is not evidence that PDMPs affect other less-commonly abused opioids like oxymorphone, hydromorphone,
meperidine, tramadol, tapentadol, morphine, or methadone. The unresponsiveness of the more uncommon
opioids is consistent with findings in Kilby (2015). Results available upon request.

17In the Medicaid data, only 0.2% of hydrocodone comes in higher-dose, extended release capsules.
18Effects disaggregated on pill strength are robust to using different milligram cutoffs for “strong” pill

classification. Results are driven by 30, 40, and 80 mg oxycodone pills, as covered in Appendix C.
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Table 3 displays Medicaid drug milligrams in tablet form per enrollee and ARCOS drug

milligram shipments in all forms per population in the data. The oxycodone per capita

rate from the ARCOS and the oxycodone tablet milligrams per Medicaid enrollee19 from the

Medicaid data appear similar at around 55 morphine units per quarter per person, which

is approximately 6-8 low dose pills or 1-2 high-dose pills per capita. In the Medicaid data,

where oxycodone can be broken down into high dose (> 10 mg) and low dose (≤ 10 mg), the

bulk of prescribed oxycodone is dispensed in high dosage tablet form. Hydrocodone comes

in nearly exclusively low-dose tablets, often in combination with acetaminophen, as is the

case with brand name Vicodin. It is unknown wheter the proportions of weak dose versus

strong dose tablets of oxycodone (or hydrocodone) in the Medciaid data is the same as in the

general population because the ARCOS data lacks this information. I assume the Medicaid

information is representative and explore it because policy effects on dosage strength are

an interesting and potentially important contribution to the literature on opioid supply-side

interventions.

3.3 NIBRS

The National Incident-Based Reporting System (NIBRS) is an incident-level dataset of

crimes committed in 6,251 law-enforcement jurisdictions across 38 states and 1,634 coun-

ties. For the purpose of this paper, I use a complete monthly panel of 735 counties in 26

states from 2004-2014. A map of the 735 counties is documented in Figure 1, which shows

that coverage is nationally widespread, including some states with near-complete coverage.

The NIBRS is a more-detailed subset of the FBI’s Uniform Crime Reporting (UCR) system,

and the 2004 NIBRS covered police districts in areas containing 20% of the United States

population and accounted for 16% of the UCR crime statistics data collected by the FBI.

Reported crimes include information about the location where the incident occurred, details

about the nature of the crime, and demographic characteristics of the offender (among other

information).

For my analysis, I focus on drug crimes involving the purchase, sale or possession of

heroin or illegally obtained prescription opiates. I collapse the NIBRS incident-level data

to obtain a panel of the number of crimes per 100,000 population per month in each cov-

ered county. Dependent variables include incidents where heroin or opiates are seized, and

incidents involving possible drug dealers, as defined below.

I divide counties based on their density of oxycodone, revealed by the ARCOS data, for

the year 2004, prior to the timing of most electronic PDMPs. My rationale is that PDMPs

19I classify capsules and tablets as tablets.
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should have a larger impact and cause more opioid abusers to transition to heroin in areas

with a larger stock of opioid abusers prior to the PDMP. I proxy the number of existing opioid

abusers with the recorded numbers of oxycodone milligrams per capita, matching zipcode-

level ARCOS data to county-level crime data in order to obtain fine geographic measures of

oxycodone density. I use each county’s mean per-quarter amount of oxycodone per capita

in 2004 to proxy the initial stock of opioid abusers susceptible to the PDMP. The 2004 level

is late enough that the opioid crisis was beginning to affect counties differently, but early

enough that most PDMPs had not been implemented. The distribution of oxycodone density

across different counties is plotted in Figure 2. Most counties receive 10-50 milligrams per

person in oxycodone shipments, but the figure suggests that there are “outlier” counties that

receive many more opioids per capita. I split the counties on the 90th percentile of oxycodone

density, at 63.15 milligrams of oxycodone per capita. The 10% of counties that are above

this cutoff are the “high oxycodone density” counties and the bottom 90% that are more

centered around 25 mg/capita are classified as “low oxycodone density” counties.20 Figure

3 shows oxycodone-density for the counties in the NIBRS data, with the most oxycodone

dense counties appearing in New England, the Appalachian regions of Tennessee, Virginia,

and West Virginia, and a few counties in Ohio, which are all known to be high-abuse areas.

Table 4 displays summary statistics of drug crimes from the NIBRS data. The table is

split into 3 panels: crime rates across all 735 counties in the NIBRS, crime rates within the

lower 655 (counties that make up the bottom 90%) of the oxycodone-per-capita distribution,

and crime rates within the 80 counties (counties that make up the top 10%) with the highest

oxycodone-per-capita. The typical county realizes 1.3 heroin incidents and 2.2 incidents

of illegally diverted opioids per 100,000 population per month. The less oxycodone-dense

counties experience a mean of 1.124 heroin incidents and 1.866 diverted-opioid incidents

per month, whereas the highly-opioid-dense counties experience 2.342 and 4.009 heroin and

diverted-opioid incidents, respectively. Thus, the rates in the most oxycodone-dense counties

are twice as high.

To identify possible heroin dealers in the NIBRS dataset, I count the individuals per

county and month who 1.) are carrying more than 2 grams21 of heroin, 2.) Are carrying

between 1 and 2 grams of heroin and a large amount of another drug22, or 3.) Are carrying

20Results are robust to different cutoffs. Appendix B includes figures that plot coefficient estimates when
using cutoffs other than the 90th percentile, and suggest that the heroin results are significant among the
top 30% of counties in terms of oxycodone density.

211 gram of heroin is 100 doses of 10 mg each. States have varying levels of heroin amounts that create
the assumption of “trafficking,” with Idaho, Maine, Mississippi, South Carolina, and Vermont considering 2
grams an important cutoff for trafficking, assigning harsher punishments to those carrying above 2 grams of
heroin. Other states typically have cutoffs ranging between 1 and 5 grams, but laws differ drastically across
states.

22More than 1 gram of crack cocaine, more than 1 gram of cocaine, more than 500 grams of marijuana
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any heroin and were entered in the data as selling any drug. A probable opiate dealer is

someone who 1.) is carrying more than 5 grams or 250 pills of opiates, 2.) is carrying

between 2 and 5 grams or between 100 and 250 pills and are carrying a large amount of

another drug, or 3.) is carrying opiates and are entered as selling any drug.

In Table 4, the average county realizes 0.502 incidents per month involving possible heroin

dealers, and 0.523 involving possible dealers of diverted opioids. The low oxycodone counties

experience about 0.4 incidents of each type per month, whereas the high oxycodone counties

experience about 1 heroin and diverted-opioid incidents per month which involve a possible

dealer. Again, the crime ratio for the two sets of counties is about two to one.

4 Empirical Methods

For the main analysis of this paper, I use a difference-in-differences regression framework on

a state-quarter panel and a county-month panel weighted by population, using the different

implementation dates by state of PDMPs, Mandates and Pill Mill Bills as a source of ex-

ogenous variation in treatment. The identifying assumption of the difference-in-differences

specification is the parallel trends assumption that treated and untreated states follow sim-

ilar growth paths prior to the treatment and would have continued to do so in the absence

of treatment. This approach identifies changes in trends within the treated geographies

that correspond to the timing of the implementation of the policy. I adapt the difference-

in-differences models into an event-study framework with policy lags and leads to test the

parallel trends assumption. I later supplement the analysis with interactive fixed effects

factor models (IFE), as detailed in Bai (2009), which are explained later in the paper.

4.1 The Effect of PDMPs on Prescription Data and ARCOS Ship-

ments

Models for finding the effect of the policies on the amount of opioids used by Medicaid

recipients and ARCOS shipments are at the state and quarter level. The model is as follows:

RxOutcomeit = α + βPDMPit + ηMandateit + φPillMillBillit + ΨXit + ιi + γt + εit

Where RxOutcomeit is logged milligrams of Medicaid oxycodone or hydrocodone per Med-

icaid enrollee, or logged total ARCOS shipped amounts of oxycodone or hydrocodone per

(about 17 oz–enough to be charged with a felony in most states), more than 2 grams of opioids, or more
than 1 gram of methamphetamine.
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population in state i in quarter t or earlier.23 PDMPit is an indicator that is equal to one

if state i has established an electronic Prescription Drug Monitoring Program by quarter t.

Mandateit is an indicator equal to one if a state has mandated that prescribers must check

the PDMP under certain circumstances by time period t. PillMillBillit is an indicator equal

to one if a state has passed a menu of laws targeting “Pill Mills.”24 γt is a set of time period

fixed effects that flexibly capture the average national time path of the outcome variable. ιi

is a set of geography fixed effects that control for the average level of the outcome variable

in a state and the effects of time-invariant state characteristics. εit is a stochastic, normally

distributed error term.

Event-study graphs (for example, graphs in Figures 4 and 5) are based on the following

models:

RxOutcomeit = α+Σ10
p=−5βpPDMPi,t+p +ηMandateit +φPillMillBillit +ΨXit + ιi +γt +εit

PDMPi,t+p is an indicator equal to one if the policy started in state i in the time t+ p.

The coefficients βp capture the measured effect of the PDMP at p periods after passage.

For example, if p = 2, βi,t+2 would capture the effect of the policy on the outcome variable

2 periods after passage.25 Negative values of p correspond to “leads,” which capture the

effect of the policy before it is implemented and should be zero under the parallel trends

assumption of the difference-in-differences methodology.

Xit is a matrix of controls that capture changes within states over time in demographic

characteristics and economic characteristics. State-level controls for the prescription out-

come models are summarized in Table 5. The matrix includes the fraction of the population

that is black, Hispanic, or of other non-white race, as well as the poverty rate, unemployment

rate, average weekly wage rate, average income per capita, and the fraction of the population

employed in the agriculture or manufacturing sectors. I include controls for the age composi-

tion of the population (fraction of population in age groups 10-19, 20-29, 30-39, 40-49, 50-59,

60-69 and 70 years or older) and the gender composition of the population. I control for

the average number of pills of all drug types filled through Medicaid per Medicaid enrollee

to capture variation in the overall Medicaid-prescribing behavior within states over time. I

23Logged linear models are used for prescription outcomes, but results on Medicaid oxycodone, strong
Medicaid oxycodone, and ARCOS oxycodone are robust to the removal of the log and are available upon
request. Prescription results are also robust under a Poisson model, also available upon request to the author.

24A state with more than one policy, like Kentucky, which has a PDMP, a usage mandate, and a pill mill
crackdown by July 2012 will have all three indicator variables equal to one, with the cumulative effect of the
policies on the outcome equal to the sum of the variables’ coefficients.

25Indicator variables PDMPi,t+p are only equal to one in the time p period after passage, and equal zero
in all other time periods.
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also control for the implementation of Medicare Part D, which increased elderly access to

prescription drugs, by controlling for the fraction of the population enrolled in Medicare

interacted with an indicator that turns on in 2006, when Medicare Part D began.26 I con-

trol for state-varying Medicaid expansion under the Affordable Care Act, but the expansion

occurs in 2014, 2015, and 2016 and is not driving results.27

Finally, I control for effects of the abuse-deterrent reformulation of OxyContin that be-

came prevalent in 2010, because Alpert et al. (2017) and Evans and Power (2017) find a large

impact of the OxyContin reformulation on heroin overdoses. Both studies find that states

react differently to the OxyContin reformulation based on their pre-policy rate of reported

OxyContin abuse (in the NSDUH) (Alpert et al., 2017) and oxycodone per capita in the

ARCOS (Evans and Power, 2017). Their models control for heterogeneous effects of the re-

formulation across different states by multiplying a post-reformulation indicator variable by

the pre-reformulation proxy for opioid abuse. Similarly, I control for differing effects of the

reformulation across states by multiplying a post-reformulation indicator by a state’s mean

number of OxyContin milligrams per Medicaid enrollee (in the Medicaid data) in 2004.28

4.2 The Effect of the PDMPs on Crime Rates

Crime-rate models use the NIBRS panel data at the county and month level. The main

analytic-weighted difference-in-differences models are in the form:

CrimeRatect = α + βPDMPct + ηMandatect + φPillMillBillct + ΨXct + ιc + γt + εct

CrimeRatect is the number of crimes per 100,000 people in the NIBRS-covered population

in county c in month t.29,30 PDMPct, Mandatect, and PillMillBillct are indicators equal to

one if the PDMP, Mandate, or menu of “Pill Mill” legislation is in effect in county c’s state

in month t, and β, η, and φ capture the effect of the policies on the outcome crime-rate. Xct

is a matrix of county characteristics that vary over time, and γt and ιc are time and county

26Since many opioid abusers obtain their drugs from friends and relatives, increasing senior access to
prescription drugs increases opioid abuse. See Pacula, Powell and Taylor (2015) for a time-study analysis.

27Regressions dropping data from 2013-2015 yield similar results, meaning the ACA is not driving coeffi-
cient estimates. Results available upon request.

28Alpert et al. (2017) use OxyContin abuse that is reported in the NSDUH as a measurement for how
states will experience the effects of the OxyContin reformulation on heroin overdoses. When I instead use
OxyContin prescribing rates in the Medicaid data on heroin crime outcomes, my result magnitudes are
similar to the Alpert et al. (2017) effects of NSDUH OxyContin abuse reporting on heroin overdoses.

29Outcomes for crime rates are not logged because 86% of county-month pairs report zero heroin incidents.
Heroin results are robust under a Poisson regression model, as documented in a later section.

30The NIBRS includes a variable that lists each reporting jurisdiction’s covered population. Jurisdiction
populations within the same county are summed when aggregated to the county level.
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fixed effects.

Table 6 lists county controls in matrix Xct. Controls include racial, age, and gender

demographics like in the prescription section, but instead at the county level. I also control

for the county-level unemployment rate and average weekly wage. I control for the fraction

of the county’s labor force that works in a manufacturing job and use pharmacies per capita

to control for changing access to prescription drugs. I control for law enforcement officers

per capita in each crime-reporting jurisdiction over time to account for any enforcement

changes within counties that may correspond to the timing of the policies. I also control

for the abuse-deterrent reformulation of OxyContin and the enactment of Medicare Part

D as I did for the models in the prescription opioid models.31 I adapt the approach in

Alpert et al. (2017) and Evans and Power (2017) for measuring the effect of the OxyContin

reformulation to the county level by multiplying a post-August 2010 indicator by counties’

pre-reformulation oxycodone density in the ARCOS data.32

To identify the effect of the policies over time and support the identification assumption

of parallel trends, I create graphs with coefficient estimates obtained from the event study

(as seen in Figures 6):

CrimeRatect = α + Σ12
f=−12βfPDMPi,t+f + ηMandatect + ΨXct + ιc + γt + εct

βf captures the effect of the PDMP on the crime-outcome variable at f months after

passage. For example, β5 estimates the effect of the PDMP 5 months after passage. The

βf coefficients associated with negative, (pre-policy) time periods should equal zero and will

capture pre-policy effects if the parallel trends assumption is not satisfied.

4.3 The Interactive Fixed Effects Factor Model

The interactive fixed effects (IFE) factor model as detailed in Bai (2009) accounts for (possi-

bly non-linear) geography-specific time trends while nesting fixed effects of time and county

(state), accomplished by adding a principal component analysis structure to the error term.

The IFE factor model assumes that patterns in opioid and heroin abuse within counties

31Medicare enrollment by year is available at the state level, but not at the county level. At the county
level, I instead proxy by using fraction of the population who are aged 65 and up.

32Medicaid data are not available at the disaggregated county level. To measure a treatment intensity of
the OxyContin reformulation at the county level, I use ARCOS oxycodone shipments per capita from each
county interacted with a post-August 2010 indicator. This method is almost identical to the method in
Evans and Power (2017), but at the county rather than state level. My estimates of the county-level effect
of the reformulation (measured by ARCOS oxycodone density) on heroin abuse (measured by heroin crime
rates) are similar in magnitude to those in Alpert et al. (2017), who also find the effect of the reformulation
(measured by NSDUH OxyContin abuse reports) on heroin abuse (measured by heroin overdoses).

16



(states) can be modeled as a function of R unobserved linear factors, Frt. The optimal

number of factors, R, are chosen using criteria in Bai and Ng (2002).

AbuseOutcomect = α + βPDMPct + ΨXct + ΣR
r=1λrcFrt + u

The above equation outlines the IFE factor model structure, where Frt is an unobserved

factor, common across all counties (states) in month (quarter) t, and λrc is a county (state)

factor loading, constant over time.

The factors, Frt, can be thought of as nationwide time trends in opioid or heroin abuse

to which different counties (states) are either more or less susceptible, depending on unob-

servable characteristics of those counties (states). The basic difference-in-difference model

accounts for national non-linear patterns in abuse, and the IFE factor model extends this

by accounting for additional non-linear time trends that affect areas to varying degrees. For

example, when I apply the factor model to heroin crime-rates, the factor model produces

factors that plot out a gradual increase in heroin crime from 2004-2010, which then in-

creases exponentially from 2010-2014. Counties experience the non-linear increase in heroin

to differing degrees, which is accounted for in each county’s factor loading. In the case of

heroin crime incidents, a county’s factor loading is correlated with its 2004 level oxycodone

milligrams per capita, implying that more opioid-dense counties are more sensitive to the

increase in heroin crime. This is consistent with the original hypothesis that restricting

opioids causes more heroin use.

For factor model analysis on heroin incidents, the IFE factor model could in theory be

approximated by adding linear, quadratic, and cubic geography-specific time trends to a

difference-in-differences regression, but that comes at the cost of efficiency and statistical

power. In practice, however, rather than adding a linear, quadratic, and cubic time trend for

each of 735 counties, the factor model uses a matrix structure based on principle components

analysis to account for several flexible time trends and assign factor loadings for each time

trend by county. This factor approach uses fewer degrees of freedom while controlling for

flexible time trends and therefore results in more precisely measured-estimates. The IFE

factor model serves as a robustness check to my difference-in-differences model, and the

point estimates are typically similar across both model specifications. Factor model results

are covered in detail in the results section.
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5 Results

5.1 Effect of the PDMP on Prescription Amounts

Table 7 shows the estimates for the coefficients of interest in Equation 4.1, measuring the

effect of the PDMP and related policies on the Medicaid prescription and ARCOS ship-

ments of oxycodone and hyrocodone amounts per capita. The model specification in Table

7 includes state and quarter fixed effects and state controls, and weights observations and

standard errors by either state Medicaid enrollees for models run on Medicaid outcomes

(Columns (1)-(4)) or state population for models run on ARCOS data (Columns (5) and

(6)). Columns (1)-(4) contain coefficient estimates from the weighted difference-in-differences

model run on Medicaid oxycodone, weak oxycodone, strong oxycodone, and hydrocodone,

respectively. Columns (5) and (6) contain the estimates from the model run on ARCOS

total oxycodone and hydrocodone, respectively.

The Medicaid outcome variables in Columns (1) through (4) are in logged morphine mil-

ligrams per Medicaid enrollee and the ARCOS outcome variables in Columns (5) and (6)

are in logged morphine milligrams per capita, meaning that table entries are interpreted as

proportional increases and decreases in the dependent variable in response to the PDMP,

Mandates, and “Pill Mill Bills.” Column (1) shows the PDMP reduces Medicaid oxycodone

per Medicaid enrollee by 24.6%, which is significant at the 10% level. Column (2) shows

neither a large nor significant reduction in oxycodone per Medicaid enrollee in the form of

weak-dose (≤10mg) oxycodone pills; however, Column (3) shows a significant 35% reduc-

tion in strong-dose (>10mg) oxycodone per Medicaid enrollee in response to the PDMP. In

Column (5), the PDMP is found to reduce the aggregate amount of oxycodone shipped per

capita by 8%, significant at the 10% level. Neither Columns (4) nor (6) suggest that the

PDMP has an effect on hydrocodone use. See Appendix A for Medicaid prescription results

across model specifications.

Figure 4 shows the accompanying event study graphs for the weighted difference-in-

differences model in Columns (1), (2), and (3) from Table 7, in which the dependent variables

are Medicaid total oxycodone, weak oxycodone, and strong oxycodone per enrollee. The

vertical line in each graph marks the first quarter of the PDMP. Oxycodone begins trending

downward at the time of the policy implementation, and this effect is driven by a reduction in

strong oxycodone, which makes up the majority of all oxycodone amounts dispensed through

Medicaid. The leads of the oxycodone and strong oxycodone graphs are close to zero until the

policy takes effect at quarter zero, which supports the parallel trends assumption. The states

with PDMPs had similar growth paths to states without PDMPs prior to the implementation

of the policy. The parallel trends assumption seems to hold. The graphs show a break in
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trend among the treated states at the time of the policy implementation, lending evidence

to the PDMP causing a decrease in oxycodone.

Figure 5 plots the event study coefficient of the model on aggregate shipment rates of

oxycodone from the ARCOS data, and shows an 8% reduction among such shipments per

capita over time. This result is consistent with much of the PDMP literature that uses

ARCOS data as an outcome response to the systems, including Kilby (2015), who finds a

10% reduction in ARCOS oxycodone in response to the non-mandated PDMP. I find larger

oxycodone reductions for the Medicaid population than for the aggregate population, which

can be explained by several reasons. The CDC states that people enrolled in Medicaid

are more prone to opioid and heroin abuse (see Table 2), meaning that if PDMPs affect all

opioid abusers similarly, the effect will be greater in the Medicaid data because opioid abusers

make up a larger fraction of the Medicaid population (Frank, 1999). Additionally, prescribers

who interact with high-abuse populations are more likely to use a PDMP, even if it is not

mandated (Goodin et al. (2012), Ross-Degnan et al. (2004), and Irvine et al. (2014)), so in

areas with large abuse populations, PDMPs are perhaps effective in cutting usage despite

not being mandated by law. In short, the Medicaid population may be specially positioned

for the PDMP to work well on it.

Although many of the models in Table 7 show significant effects of the Mandate and

Pill Mill Bill policies on drug amounts, all of the event study models fail the parallel trends

assumption, and are not remedied by the addition of trends. Both Mandate and Pill Mill

Bill results on prescription outcomes are volatile across model specifications.33

A novel contribution of this study is that I find the decrease Medicaid-prescribed oxy-

codone is driven by reductions in prescriptions for the high-dosage oxycodone pills (¿10mg).

No other study has considered heterogeneous effects of the PDMP on oxycodone drugs of

differing strengths. For additional detail, Appendix C includes an analysis of the PDMP ef-

fect on Medicaid oxycodone at a further level of disaggregation, and it finds that reductions

in the 30, 40, and 80 milligram pills are driving the overall reduction in strong-dose pills.

I also find that PDMP reductions among Medicaid prescriptions are only prevalent among

generic oxycodone pills, and not brand-name OxyContin.34

33See Appendix A for model estimates and graphs of Mandate event studies. This paper is restricted
to examining 12 Mandates passed between 2007 and 2015. Since 2015, 15 more states have passed and or
implemented Mandates to their PDMPs, and future work on the effectiveness of Mandates may benefit from
the additional states.

34Hwang et al. (2015) and Meinhofer (2016) find that only generic oxycodone is responsive to the reformu-
lation of OxyContin and Florida’s crackdown on pill mills, respectively. Additional results on brand-name
versus generic oxycodone are available upon request to the author.
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5.2 Effect of the PDMP on Drug Crime Rates

Table 8 shows the effect of the PDMP on crime incidents in which heroin is seized per 100,000

NIBRS-covered population in a county and month. Entries in this table show the effect of

the PDMP, Mandate and “Pill Mill Bills” on number of heroin crime incidents per 100,000

population. These entries interpretable as the change in heroin crime incidents per 100,000

per month caused by the policies. The table is broken up into three panels, for models run

on A.) all 735 counties, B.) on the bottom 90% of counties by oxycodone density, and C.) on

the top 10% of counties by oxycodone density (all as determined from the ARCOS dataset).

Panel A shows the effect of the policies across all counties in the NIBRS. Column (1)

shows coefficient estimates from a simple ordinary least squares model of the heroin crime

rate on the PDMP, Mandate and Pill Mill Bill. The significant estimate of 0.466 shows that

PDMP-instigation is positively correlated with the rate of heroin incidents. This correlation

is likely due to an overall upward trend in heroin incidents over time. Column (2) adds

county and time fixed effects to the OLS specification, controlling for county levels and a

national average trend in heroin incidents, and the point estimate falls to 0.155 additional

heroin incidents after the passage of the policy, and this result is statistically insignificant.

Column (3) adds county demographic and economic controls (as summarized in Table 6),

and estimates do not substantially change from the fixed effects specification in Column (2).

Column (4) adds county-specific time trends, and estimates become larger in magnitude

(0.384) but remain insignificantly different from zero. Column (5) applies the IFE factor

model, as outlined in Section 4.3, which nests difference-in-differences and time trends while

controlling for unobserved confounding variables at the county level. The positive estimate

and statistical significance of the factor model’s estimate in Column (5) suggests there is some

meaningful heterogeneity not being addressed in the difference-in-differences approach at the

national level. However, this is only significant at the 10% level and demands confirmation,

which will be given below.

As in the state-level models on prescription outcomes, the results for the Mandate and

Pill Mill Bill effects on crime rates are volatile across model specifications. In Panels B and C

in Table 8, Mandate effects on heroin incidents switch signs between the control and linear-

time-trend model specifications. This is likely because the effect of the Mandate within the

NIBRS-covered counties is identified using changes in the policy across only 8 states. The

results for Pill Mill Bills also vary dramatically across specifications, likely because effects

are identified using 6 treated states in the NIBRS data. The small sample sizes of too few

treated states could be confusing results.

Panel B in Table 8 shows that the PDMP has an insignificant effect on the rate of heroin

incidents in counties that had a low oxycodone density prior to the policy, and are therefore
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likely to be less susceptible to the policy. The IFE factor model finds a small significant

increase (0.095 additional heroin incidents per 100,000 people per month) in the rate of

heroin incidents among the bottom 90% of counties, equal to an 11% increase. Since the

difference-in-differences estimates and the IFE factor model estimates are not consistent

with one another, it is not certain that there was a change in heroin incidents in the less

oxycodone-dense counties. Appendix B shows insignificant, near-zero effects of the PDMP

in the bottom half of counties by oxycodone density when the more oxycodone-dense half of

counties are excluded from the model.

In contrast to the less oxycodone-dense counties, the counties in the top 10% of the

distribution, as shown in Panel C of Table 8, experience a statistically significant effect of

1.745, 1.69 or 0.972 additional heroin incidents per 100,000 population per month under

the specifations with controls and linear time trends, and the IFE factor model specificatio,

respectively. Police are encountering 47% to 84% more heroin incidents in these highly

susceptible counties, which experience a baseline of 2.07 heroin incidents per 100,000 NIBRS-

covered population per month in the year prior to the policy. This large, positive effect of the

PDMP in high-density counties is robust across many different estimation specifications.35

Figure 6 shows the effect over time of the PDMP on the rate of heroin incidents in all coun-

ties in the top graph, and in the counties with high oxycodone density in the bottom graph.

The event study graphs contain dashed vertical lines that allow for a possible announcement

effect during a six month window leading up to the effective date of the policy.36 Consistent

with Panels A and C of Table 8, the graphs show an increase in heroin incidents after the

implementation of the PDMP. The leads on the graphs are close to zero, and support the

identifying assumption of the differences-in-differences model that states that treated coun-

ties are trending similarly to untreated counties prior to the policy. Post-implementation, the

graph line trends upwards, meaning PMDP is causing more heroin incidents in the counties

with the highest oxycodone shipments per capita.

Table 9 contains estimated effects of the policies on several different drug-crime outcomes,

split on high and low oxycodone density. This table contains results from the difference-in-

differences model specification without county-specific linear time trends (the “Controls”

model from Table 8). Again, Panels A-C distinguish types of counties by oxycodone den-

sity. Columns (1) through (4) document model coefficient estimates on the rates of heroin

35This result is robust to the removal of analytic weights, though somewhat less precise. This result is
also robust in poisson regressions and in the context of weighted and unweighted factor models, and results
from all models are available upon request.

36Many states began documenting controlled substances in the PDMP system months before the PDMP
was accessible by prescribers (the effective date of the policy), perhaps resulting in a slight announcement
effect.
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incidents (taken from Table 8), incidents that involved possible heroin dealers (Column (2)),

diverted opiate incidents (Column (3)), and incidents involving possible dealers of diverted

opiates (Column (4)).

Panel C shows that in the most oxycodone-dense counties, the incidents with possible

heroin dealers increase significantly: 0.324 additional incidents per 100,000 population after

the PDMP, equal to a 37% increase from the pre-policy, pre-announcement level of 0.880.

Figure 7 displays event studies of the PDMP effect on possible heroin dealers in all

counties and in the most oxycodone-dense counties. There is a significant increase in possible

heroin dealers in the most opioid-dense counties, but not across all counties.37 Theory

predicts an increase in demand for heroin and quantity traded of heroin, because heroin is

a substitute for prescription opioids. I find a significant 84% increase in heroin incidents in

the most susceptible areas, equal to about 1.75 additional incidents per 100,000 population

per month, consistent with predictions.38

A crime involving diverted opioids is an incident in the NIBRS in which an offender is

carrying prescription opioids for which he or she does not have a prescription. The PDMP’s

effect on opiate incidents is noisy and has large standard errors, consistent with predictions.

It remains noisy and insignificant, often with point estimates near zero, across different model

specifications. Close examination of event study graphs of opiate incidents over time do not

reveal consistent effects or anything of note for all counties or for the more oxycodone-dense

counties. Figure 8 shows such graphs. The plotted coefficient points come from the IFE

factor model this time because the difference-in-differences event studies do not satisfy the

parallel trends identification assumption, even when accounting for linear county-specific

time trends. That is, the linear time trends are not enough to capture trends in illegal

opioid seizures in the data. Regardless of the model used, the PDMP does not produce

significant effects on the rate of diverted opioid incidents. Results on possible opioid dealers

are similarly noisy, insignificant, near zero and are not discussed.

Simple theory predicts PDMPs cause an increase in the demand for illegal prescription

opiates, but a decrease in supply of illegal prescription opiates (diverted from the market

of legal prescription opiates). These opposing market forces lead to a predicted increase

in the street price of prescription opioids, but ambiguous effects on the predicted quantity

traded. These imprecise, zero estimates of the effect of the PDMP on opiate incidents are

37As shown in Panel C of Table 8 and discussed further Appendix B, the effect of the PDMP on heroin
outcomes is driven by those counties in the top half of the oxycodone-per-capita distribution.

38The 84% increase estimate is obtained from the analytic-weighted difference-in-differences model with
county and month fixed effects and controls. The result that the PDMP causes a large increase in heroin inci-
dents in the most opioid-dense counties is robust across model specifications, including additional difference-
in-differences specifications, factor model specifications, and a Poisson framework, all available upon request
to the author.
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not surprising in light of the uncertain theoretical predictions.

5.3 Results from the Interactive Fixed Effects Factor Model

As explained in section 4.3, the IFE factor model from Bai (2009) flexibly accounts for

nationwide time trends that affect different counties based on unobservable characteristics.

Results calculated from the difference-in-differences models and IFE factor model are similar

in regressions on prescription outcomes (as seen in Appendix A), likely because trends at the

state-level are mitigated with aggregation. In contrast, difference-in-differences results and

factor model results diverge more in the heroin models because of non-linear time trends at

the more disaggregated county-level. When applied to the model on heroin incidents, the

factor model produces time trends that appear to fit non-linear county-specific time trends

that the difference-in-differences model with county-specific linear time trends is not able to

capture.

The factor model nests nationwide time trends, and Figure 9 graphs a polynomial fit of

the nationwide trend in race of heroin incidents by county. Difference-in-differences models

are able to pick up this non-linear common time trend in the figure by including time fixed

effects. The nationwide time trends in Figure 9 does not account for differences in time

trends across counties.

Figure 10 shows the “Factor 1” time trend from the IFE factor model. Factor 1 is a

nationwide time trend experienced differently by individual counties depending on county

factor loadings. August 2010 is the month when Purdue Pharmaceutical released the abuse-

deterrent reformulation of OxyContin. Notice that Factor 1 shows a non-linear pattern of

heroin incidents over time, with a sudden acceleration after 2010. During time periods 0

through 80, which corresponds to the period between January 2004 and August 2010, the

rate of heroin incidents increases modestly, and then dramatically after August 2010. In

the county-level regressions, I control for county-specific level responses to the tamper-proof

reformulation by multiplying a post-August-2010 dummy indicator by each county’s pre-

reformulation oxycodone density.39 Controlling for a level shift allows the abuse-deterrent

reformulation to affect counties proportional to their likely abuse exposure. However, it

appears that controlling for the reformulation in this way does not fit the curvature of heroin

incidents after 2010 well, as the factor model’s first factor and nationwide time fixed effects

trends pick up a dramatic increase in heroin incidents beginning in August 2010.40 Figure

11 contains a map of the NIBRS counties’ Factor 1 loadings. The darkest-color counties in

39Alpert et al. (2017) and Evans and Power (2017) use a similar method.
40Factor 1 is by construction orthogonal to the variable that proxies the OxyContin reformulation, and is

perhaps picking up additional unexplained variation across counties not captured by the proxy.
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Delaware, Oregon, Ohio, West Virginia, and Virginia experience the steepest increases in

heroin incidents after 2010.

Counties’ Factor 1 loadings are correlated with their 2004 density of ARCOS oxycodone,

meaning more opioid-dense counties experience greater heroin transition after 2010. As an

illustrative example, I have chosen two example counties, and fit lines to their heroin incident

rates over time. Figure 12 displays the rate of heroin incidents in Spotsylvania County, VA,

which the IFE model had assigned a large factor loading (90th percentile) and Florence

County, SC which the IFE model had assigned a typical factor loading (50th percentile).

The rate in Spotsylvania County shows more of a non-linear incident pattern, realizing a

dramatic increase in the 2010s. Figure 13 shows the heroin incident rate over time of the

same counties, after removal of the controls and the county and time fixed effects. The figure

approximates what the difference-in-differences model is left to fit with county-specific linear

time trends after other covariates and fixed effects are controlled for. A linear trend fit to

Spotsylvania’s heroin incidents will provide a poor fit, and it biases the coefficient estimates

of the PDMP upward.41 The counties with large factor 1 loadings experience a sharp increase

in heroin incidents in later time periods, and the difference-in-differences models with linear

time trends will fit linear trends to counties partially based on the shallower slope in heroin

incidents between 2004 and 2010. The increase in heroin incidents after 2010 will fall above

the trend, and may be falsely attributed to the PDMP.

Table 10 compares the results of various difference-in-difference models with those of the

IFE factor model. The coefficients resulting from the difference-in-differences models under

linear time trends is 0.384, larger than the model without time trends (0.239). Adding

quadratic and cubic county-specific time trends for the regressions on all counties results in

a PDMP coefficient estimate of 0.108 additional heroin incidents per 100,000 population per

month, which is very close to the IFE factor model estimates (0.112) because the county-

specific polynomials capture the curvature in heroin incidents within counties.

6 Additional Robustness Checks

6.1 Placebo Test and Wild Cluster Bootstrap

Due to concerns about autocorrelation and few treated states in the panel data, wild cluster

bootstrapped p-values are used to draw inference for all main results. Coefficients on the

PDMP remain significant for regressions on Medicaid oxycodone, Medicaid strong oxycodone,

41Virginia’s PDMP was implemented in June 2016, corresponding to time period 30 and South Carolina’s
PDMP was implemented in June 2008, corresponding to time period 55.
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ARCOS oxycodone, and heroin incidents among oxycodone-dense counties.

Table 11 displays rejection rates from a placebo test as suggested in Bertrand et al.

(2004). Concerns about autocorrelation are especially pertinent to difference-in-differences

regressions on addictive opioid drugs, which have a highly correlated temporal pattern. Using

the state-quarter Medicaid data and county-month crime rate data, I randomly assign fake

PDMP, Mandate and Pill Mill Bill laws to states for any time between 2004 and 2014, with

probability equal to the relative frequency of the real policies in the data. I then run my

models on the data with the placebo policies to test rejection rates. Fictitious placebo laws

should be significant at the 5% level 5% of the time. Table 11 shows that difference-in-

differences over-rejects the null hypothesis of zero effect for all policies, to varying degrees.

The problem is most acute for the Mandate policy and the Pill Mill Bill regulation, with

rejection rates around 20% and 35%, respectively, likely because of few treated states for

either policy. Rejection rates of the placebo PDMP policy range from 6% to 30%, with the

main prescription results on oxycodone only slightly over-rejecting at the 6-8% level. This

may mean that in this study, difference-in-differences estimates are overly lax in rejection.

To remedy the over-rejection problem, I use the Wild Cluster Bootstrap t-statistic-

percentile procedure outlined in Cameron, Gelbach, Miller (2008).42 P-values obtained from

this procedure are included in brackets for key results in Table 7, Table 8 and Table 9. IFE

factor model results are cluster-bootstrapped as well.

7 Conclusion

Opioids are highly addictive and foster dependence among individuals taking high doses.

When abusers’ supply of prescription opioids is cut off, some may turn to heroin or illegally

diverted opioids to avoid the undesirable physical symptoms of opioid withdrawal.

Every state established electronic prescription drug monitoring programs between 2004

and 2017 to limit prescribing of opioids to those with patterns of abuse. Nationwide, PDMPs

cause an 8% reduction in prescription oxycodone quantities, and an 11% increase in heroin

crime, although this result is statistically insignificant. Prescription monitoring has larger

effects on prescriptions in the Medicaid population and causes a statistically signficant 25%

reduction in oxycodone prescribed, which is driven by an even larger 35% decrease in high-

42This procedure involves taking the residuals of a model run without the independent variables of interest
(in my case, the PDMP, Mandate and Pill Mill Bill) and randomly reassigning them within treated clusters.
The residual randomization disrupts the autocorrelation in the error term within clusters that causes over-
rejection of the null. The procedure then runs the difference-in-differences regression model on the data
with the randomly-ordered residuals, and, bearing similarities to a placebo test, obtains a distribution of
t-statistics under the meaningless data. The real t-statistic is compared to the distribution of bootstrapped
t-statistics and is assigned a p-value equal to its percentile within the distribution.
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dosage pills. Heroin crime results are driven by the counties that have the highest pre-

PDMP oxycodone per capita, which is consistent with substitution to heroin in response to

the policy. The PDMP causes a 47% to 84% increase in heroin incidents within the most

oxycodone-dense counties.

This paper contributes to the literature on the effects of legislation that reduces the supply

of opioids, and finds evidence of substitution behavior in response to PDMPs. The results

show heterogeneous effects of PDMPs within state populations, a possible explanation for

the mixed, often statistically insignificant results in the PDMP literature. When focusing on

the high abuse Medicaid enrollee subsection of the population and disaggregating oxycodone

by pill strength, evidence here supports that PDMPs successfully limit the supply of opioids

to the heaviest abusers.

Disaggregating Medicaid data on drug level allows me to identify heterogeneous policy

effects on drugs with differing amounts of oxycodone. Using county-month level crime data, I

am able to find heterogeneity of PDMP effectiveness within state populations. Disaggregat-

ing outcomes to the county level allows for a better examination of high-abuse populations,

because of differences in opioid abuse across counties within states.

The opioid epidemic costs the U.S. an estimated $78.5 billion annually. Policymakers have

primarily used supply-side policy levers in attempts to reduce the flow of new opioid addicts.

However, supply-side policies haven’t properly accounted for substitution responses among

the stock of existing opioid-dependent individuals. Future supply-side interventions should

provide alternative options for those already in the throes of addiction, or simultaneously

target alternate sources of opioids.
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Table 1: Effective Dates of Electronic PDMPs, Mandates, and “Pill Mill” Legislation

State PDMP Date Mandate Date “Pill Mill” Bill Date
Alaska January 2012
Alabama August 2007
Arkansas March 2013
Arizona December 2008
California July 2009
Colorado February 2008
Connecticut July 2008
Delaware August 2012 March 2012
Florida October 2011 July 2011
Georgia July 2013
Hawaii January 1982
Iowa March 2009
Idaho July 2008
Illinois Janurary 2008
Indiana July 2008
Kansas April 2011
Kentucky March 2005 July 2012 July 2011
Louisiana January 2009 August 2014 July 2005
Massachusetts December 2010 June 2013
Maryland January 2014
Maine January 2005
Michigan March 2011
Minnesota April 2010
Missouri July 2017
Mississippi March 2011 September 2011
Montana October 2012
North Carolina October 2008
North Dakota January 2007
Nebraska April 2011
New Hampshire October 2014
New Jersey January 2012
New Mexico August 2005 September 2012
Nevada October 2004 October 2007
New York August 2013 August 2013
Ohio October 2006 November 2011 May 2011
Oklahoma July 2006
Oregon September 2011
Pennsylvania August 2016
Rhode Island September 2012
South Carolina June 2008
South Dakota March 2012
Tennessee December 2006 January 2013 January 2012
Texas August 2012 June 2009
Utah January 2006
Virginia June 2006
Vermont April 2009 November 2013
Washington January 2012
Wisconsin May 2013
West Virginia January 2004 June 2012 September 2014
Wyoming July 2004

Dates obtained from the National Alliance for Model State Drug Laws, Brandeis
University’s Prescription Drug Monitoring Program Training and Technical
Assistance Center, state legislative laws and bills, government newsletters, news
articles, articles from peer reviewed journals, and pharmacy board websites.
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Table 2: Summary Statistics on Opioid Abuse of Individuals in the NSDUH

All Respondents Hydrocodone Oxycodone OxyContin
Abusers Abusers Abusers

Non-Medicaid Population
Fraction Abused Opioids 0.110 1 1 1
Past Year Frequency Opioids 2.029 20.190 22.822 40.453
Fraction Abused Heroin 0.011 0.084 0.114 0.197
Past Year Frequency Heroin 0.174 1.766 2.426 5.616
Fraction Abused Hydrocodone 0.077 1 0.663 0.897
Fraction Abused Oxycodone 0.056 0.481 1 1
Fraction Abused OxyContin 0.019 0.226 0.348 1
Observations 915,123 70,637 51,222 17,837

Medicaid Population
Fraction Abused Opioids 0.127 1 1 1
Past Year Frequency Opioids 3.303 28.889 32.41 52.100
Fraction Abused Heroin 0.015 0.108 0.146 0.234
Past Year Frequency Heroin 0.289 2.636 3.847 7.143
Fraction Abused Hydrocodone 0.078 1 0.688 0.879
Fraction Abused Oxycodone 0.057 0.503 1 1
Fraction Abused OxyContin 0.022 0.257 0.400 1
Observations 163,528 12,756 9,323 3,725

The table displays summary statistics from the National Survey on Drug Use and Health 1990-2014.

For the Non-Medicaid and Medicaid Population, indicators for and frequency of opioid abuse are

reported for all survey respondents, survey respondents who report having ever abused hydrocodone,

oxycodone or OxyContin. Medicaid enrollees report higher rates of abuse than those not enrolled in

Medicaid, and respondents who report abusing OxyContin and oxycodone report more frequent misuse of

opioids.
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Table 3: Summary Statistics of ARCOS and Medicaid Drug Amounts

ARCOS Data Medicaid Data
Morph. Units Morph. Units Morph. Units Morph. Units

(Millions) Per Capita (Millions) Per Capita
Oxycodone 312.5 55.54 25.90 52.24
Oxycodone: Weak Dose – – 9.083 17.53
Oxycodone: Strong Dose – – 16.81 34.71
Hydrocodone 149.4 24.68 7.377 11.44
Hydrocodone: Weak Dose – – 7.377 11.44
Hydrocodone: Strong Dose – – – –
Observations 5100 5100 5100 5100

Panel Data is by state and quarter. Data is in morphine-equivalent milligrams of oxycodone and hydrocodone.

Strong dose pills are pills containing more than 15 morphine equivalent milligrams of the active opioid painkiller.

Hydrocodone does not come in tablets containing more than 15 morphine equivalent milligrams. The ARCOS

data contains information on aggregate shipped amounts of oxycodone and hydrocodone, and the Medicaid drug

data contains information at the drug level, which is aggregated by strength.

Table 4: Summary Statistics of Crime Rates Per 100,000 Population

N Mean Std. Error
All 735 Counties
Heroin Incidents 93,742 1.299 2.716
Opiate Incidents 93,742 2.175 4.533
Heroin Dealer 93,742 0.502 1.290
Opiate Dealer 93,742 0.523 2.604

655 Low Oxycodone Density Counties
Heroin Incidents 86,232 1.124 2.481
Opiate Incidents 86,232 1.866 3.792
Heroin Dealer 86,232 0.426 1.199
Opiate Dealer 86,232 0.432 2.202

80 High Oxycodone Density Counties
Heroin Incidents 10,548 2.342 3.655
Opiate Incidents 10,548 4.009 7.300
Heroin Dealer 10,548 0.949 1.663
Opiate Dealer 10,548 1.060 4.233

Panel Data is by county and month. 735 counties across 26 states have

complete monthly coverage within the NIBRS dataset during the entire

period of 2004 to 2014. Only counties with full coverage are used in the

crime rate analysis.
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Table 5: Summary Statistics of Controls for State Level Models

N Mean Std. Error
Data: Census Bridged Population Estimates
Fraction Aged 10-19 3,204 0.1396 0.0090
Fraction Aged 20-29 3,204 0.1383 0.0093
Fraction Aged 30-39 3,204 0.1362 0.0112
Fraction Aged 40-49 3,204 0.1445 0.0101
Fraction Aged 50-59 3,204 0.1297 0.0115
Fraction Aged 60-69 3,204 0.0885 0.0150
Fraction Aged 70+ 3,204 0.0916 0.0246
Fraction Female 3,204 0.509 0.0056
Fraction Black 3,204 0.1326 0.0866
Fraction Hispanic 3,204 0.1484 0.1271
Fraction Other Non-White 3,204 0.0627 0.0441

Data: BLS Quarterly Census of Employment and Wages
Fraction Employed Manufacturing 3,204 0.1236 0.0441
Fraction Employed Agriculture 3,204 0.0116 0.0108

Data: BLS Local Area Unemployment Statistics
Unemployment Rate 3,204 0.0817 0.0405

Data: Census Historical Poverty Tables
Poverty Rate 3,204 0.1363 0.0293

Data: Bureau of Economic Analysis
Income Per Capita 3,204 $38,867 $7,867

Data: Medicaid Drug Utilization Data
OxyContin mgs per Enrollee (2004) 3,204 31.39 17.46
Medicaid Pills Per Enrollee 3,204 23.297 13.64

Data: Centers for Medicare and Medicaid Services
Fraction Medicare Enrolled 3,204 0.157 0.0221

Panel Data is by state and quarter. Income per capita is per year, and OxyContin

milligrams per capita and Medicaid pill per enrollee are quarterly.
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Table 6: Summary Statistics of Controls for County Level Models

N Mean Std. Error
All 735 Counties
Data: Census Bridged Population Estimates
Fraction 10-19 92,292 0.1387 0.0139
Fraction 20-29 92,292 0.1348 0.0357
Fraction 30-39 92,292 0.1279 0.0167
Fraction 40-49 92,292 0.1437 0.0174
Fraction 50-59 92,292 0.1376 0.0160
Fraction 60-69 92,292 0.0955 0.0202
Fraction 70+ 92,292 0.0925 0.0246
Fraction Female 92,292 0.5087 0.0127
Fraction Black 92,292 0.1181 0.1268
Fraction Hispanic 92,292 0.0687 0.0629
Fraction Other Non-White 92,292 0.0358 0.0370
Fraction 65+ 92,292 0.1288 0.0389

Data: BLS Quarterly Census of Employment and Wages
Fraction Employed Manufacturing 92,292 0.1479 0.0979
Average Week Wage 92,292 $790.70 $219.83
Pharmacies per 1,000 pop 92,292 1.64 0.738

Data: BLS Local Area Unemployment Statistics
Unemployment 92,292 0.0551 0.0224

Data: Drug Enforcement Administration ARCOS Files
Pre-2010 Oxycodone per capita 57,591 52.168 34.188

Data: FBI Uniform Crime Reporting LEOKA
Officers per 1,000 pop 92,292 17.93 0.041

Panel Data is by county and month. 735 counties across 26 states have

complete monthly coverage within the NIBRS dataset during the entire

period of 2004 to 2014. Only counties with full coverage are used in the

crime rate analysis.
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Table 7: The Effect of Policies on Logged Prescription Amounts per Capita

Medicaid Data ARCOS Data

(1) (2) (3) (4) (5) (6)

Oxycodone
Weak Strong

Hydrocodone Oxycodone Hydrocodone
Oxycodone Oxycodone

PDMP -0.246∗ -0.0813 -0.350∗∗ -0.0530 -0.0814∗ -0.0041
(0.128) (0.146) (0.151) (0.146) (0.135) (0.0263)
[0.087] [0.286] [0.033] [0.359] [0.065] [0.519]

Mandate 0.342∗∗ -0.247 0.344∗∗∗ -0.208∗ 0.157∗∗ -0.165∗∗∗

(0.145) (0.164) (0.145) (0.184) (0.0589) (0.0390)
[0.989] [0.844] [0.992] [0.123] [0.99] [0.001]

Pill Mill Bill -0.190 -0.238 -0.185 0.0843 -0.176∗∗ -0.0129
(0.156) (0.110) (0.173) (0.192) (0.101) (0.0506)
[0.283] [0.422] [0.188] [0.653] [0.028] [0.558]

Observations 2714 2713 2692 2714 3070 3066

Fixed Effects X X X X X X
Controls X X X X X X
Linear Trends
Medicaid Weights X X X X
Population Weights X X
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Data is by state and quarter. Standard errors in parentheses, clustered by state.

Wild cluster bootstrapped p-values in brackets.

The PDMP, Mandate, and Pill Mill rows contain coefficient estimates for variables indicating the timing of Prescription

Drug Monitoring Programs, a Mandate that requires practitioners to check the PDMP, or a “Pill Mill” Bill that imposes

many strict regulations on clinics that prescribe and dispense opioids on site.

Columns (1), (2), (3), and (4) show the effect of the PDMP on oxycodone, weak dose oxycodone, strong dose oxycodone, and

hydrocodone per Medicaid enrollee in the Medicaid data. Columns (5) and (6) display the effect of the PDMP on ARCOS

aggregate oxycodone and hydrocodone shipments per capita.

Weak dose oxycodone has 10 or fewer milligrams per pill; strong dose oxycodone has greater than 10 milligrams per pill.
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Table 8: The Effect of Policies on Heroin Incidents Per Capita, Across Model Specifications

OLS FE Controls LTT Factor
Panel A: All 735 Counties
PDMP 0.466∗∗∗ 0.155 0.239 0.384 0.112∗

(0.0382) (0.230) (0.288) (0.361) (0.059)
[0.654] [0.058]

Mandate 3.774∗∗∗ 1.337 0.945 0.0919 0.123
(0.226) (1.050) (0.666) (0.251) (0.308)

[0.881] [0.689]
Pill Mill Bill -1.597∗∗∗ -0.519 -0.271 0.169 0.111

(0.181) (0.867) (0.702) (0.230) (0.312)
[0.365] [0.722]

Observations 92292 92292 92292 92292 92292

Panel B: Bottom 90% of Oxycodone Density Counties

PDMP 0.672∗∗∗ -0.0767 -0.0306 -0.0256 0.095∗∗

(0.0359) (0.0700) (0.110) (0.0889) (0.045)
[0.236] [0.036]

Mandate 1.689∗∗∗ 0.178 -0.167 0.0674 -0.023
(0.202) (0.822) (0.623) (0.278) (0.137)

[0.449] [0.869]
Pill Mill Bill 0.623∗∗∗ 0.752 0.976 0.333∗ 0.136

(0.150) (0.852) (0.763) (0.164) (0.273)
[0.794] [0.618]

Observations 82704 82704 82704 82704 82704

Panel C: Top 10% of Oxycodone Density Counties

PDMP 0.0462 1.249 1.745∗ 1.690∗∗ 0.972∗∗∗

(0.139) (0.821) (0.795) (0.745) (0.303)
[0.915] [0.001]

Mandate 5.545∗∗∗ 2.386∗ 1.115∗∗∗ -0.497 2.003∗∗∗

(0.312) (1.062) (0.327) (0.413) (0.661)
[0.999] [0.002]

Pill Mill Bill -6.104∗∗∗ -3.189∗∗ -1.928∗ -0.606 -1.174∗∗

(0.301) (1.295) (0.858) (0.726) (0.551)
[0.026] [0.033]

Observations 9588 9588 9588 9588 9588

Fixed Effects X X X
Controls X X
Linear Time Trends X h̄
Population Weights X X X X X
Factor Model X
Cluster Bootstrap X X
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses and are clustered on the

treament level (state). Wild cluster boostrap p-values are listed in brackets.

Panel A shows coefficients on policies when models are run on all 735 counties. Panel B and

Panel C show heterogeneity of policy effects across counties depending on pre-policy

oxycodone milligrams per capita. Panel B shows the coefficients of the models run on a

subsample of the data containing only the bottom 90% of oxycodone-dense counties, and

Panel C shows results from models run on the top 10% most oxycodone-dense counties.

Data source: NIBRS 2004-2014.

h̄: The IFE Factor Model nests fixed effects and county-specific linear time trends.
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Table 9: The Effect of the PDMP on Drug Crimes Per Capita

Heroin Opiates

Incidents
Possible

Incidents
Possible

Dealers Dealers
Panel A: All 735 Counties
PDMP 0.239 0.013 -0.162 -0.0174

(0.288) (0.0672) (0.0956) (0.0257)
[0.654] [0.430] [0.243] [0.246]

Mandate 0.945 0.160∗ 0.147 0.0781
(0.106) (1.050) (0.195) (0.0685)
[0.881] [0.925] [0.589] [0.721]

Pill Mill Bill -0.271 -0.231∗ -0.325 -0.124
(0.702) (0.110) (0.344) (0.0639)
[0.365] [0.062] [0.622] [0.385]

Observations 24780 24384 24384 24384

Panel B: Low Oxycodone Density Counties
PDMP -0.031 -0.0317 -0.651 0.014

(0.288) (0.0483) (0.0774) (0.0248)
[0.236] [0.237] [0.441] [0.514]

Mandate -0.167 -0.224 0.437∗∗ 0.224∗∗

(0.623) (0.136) (0.347) (0.0964)
[0.449] [0.257] [0.983] [0.964]

Pill Mill Bill 0.976 0.111 -0.284 -0.222
(0.763) (0.127) (0.476) (0.0911)
[0.794] [0.688] [0.674] [0.515]

Observations 21096 20964 20964 20964

Panel C: High Oxycodone Density Counties
PDMP 1.745∗ 0.324∗ -0.547 -0.248

(0.795) (0.140) (0.213) (0.0971)
[0.915 ] [0.918] [0.131] [0.150]

Mandate 1.115∗∗∗ 0.374∗∗ -0.378 -0.237
(0.327) (1.050) (0.208) (0.103)
[0.999 ] [0.978] [0.139] [0.204]

Pill Mill Bill -1.597∗∗ -0.601∗∗ -1.160∗ -0.465∗

(0.181) (0.235) (0.249) (0.329)
[0.026] [0.010] [0.078] [0.096]

Observations 3684 3420 3420 3420
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses,

clustered by state. Wild cluster p-values in brackets. Difference-in-

differences regression model specification includes county and month

fixed effects, county controls, and population weights.

In Panel B and Panel C, the data are subdivided into the bottom 90%

of least oxycodone dense counties and the top 10% of most oxycodone

dense counties. Crime data: NIBRS 2004-2014. Oxycodone density

data: DEA ARCOS.
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Table 10: Effect of PDMP on Heroin Incidents: Comparison of Models

Difference-In-Differences IFE Factor Model
Controls LTT PTT Factor Wt. Factor

Panel A: All Counties

PDMP 0.239 0.384 0.108 0.112* 0.138**
(0.228) (0.361) (0.081) (0.059) (0.057)

Mandate 0.945 0.092 -0.036 0.123 0.485
(0.666) (0.666) (0.143) (0.308) (0.402)

PillMill -0.271 0.169 -0.036 0.111 0.114
(0.702) (0.230) (0.131) (0.312) (0.461)

Observations 92292 92292 92292 92292 92292

Panel B: Top 10% Oxycodone Density Counties

PDMP 1.745* 1.690** 0.412 0.927*** 0.949***
(0.795) (0.745) (0.496) (0.303) (0.304)

Mandate 1.115** -0.497 -0.097 1.990*** 2.003***
(0.327) (0.413) (0.311) (0.664) (.661)

PillMill -1.928* -0.606 -0.598 -1.154*** -1.174***
(0.858) (0.726) (0.383) (0.547) (0.551)

Observations 9588 9588 9588 9588 9588
Fixed Effects X X X h̄ h̄
Controls X X X X X
Popln. Weight X X X X
Linear Time Trends X X h̄ h̄
Quadratic Time Trends X h̄ h̄
Cubic Time Trends X h̄ h̄

h̄: The IFE Factor Model nests fixed effects and county-specific polynomial time trends.

The “controls” specification includes county demographic and economic controls,

as well as county and time fixed effects. The “LTT” specification adds county-specific

linear time trends, and “PTT” adds county-specific polynomial time trends by controlling

for a quadratic and cubic time trend within counties.
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Table 11: Rejection Rates Under Placebo Test at 5% Level

Policy: PDMP Mandate Pill Mill Bill

Medicaid and ARCOS Prescription Outcomes

Medicaid Oxycodone 0.084 0.163 0.321
Medicaid Weak Oxycodone 0.118 0.236 0.352
Medicaid Strong Oxycodone 0.079 0.160 0.315
Medicaid Hydrocodone 0.137 0.227 0.389
ARCOS Oxycodone 0.058 0.155 0.317
ARCOS Hydrocodone 0.147 0.222 0.360

Drug Crime Outcomes

Heroin Incidents 0.089 0.150 0.389
Heroin Dealers 0.083 0.119 0.334
Opiate Incidents 0.303 0.123 0.349
Opiate Dealers 0.091 0.082 0.380

The PDMP, Mandate, and Pill Mill Bill dates were randomly reassigned to take effect in a pre-PDMP time period.

The prescription regression model run includes state and quarter fixed effects, controls, Medicaid enrollment

weights and linear time trends. The drug crime regression models include county and month fixed effects and controls,

and dont include county trends. Rejection rates are from regression models using cluster robust weighting.

Table 12: Weighted Poisson Regression: Effect of PDMP on Prescription Outcomes

Med Oxy Med Weak Oxy Med Strong Oxy ARCOS Oxy

PDMP -0.212*** -0.074*** -0.275*** -0.084**
(0.058) (0.024) (0.073) (0.029)

Mandate -0.239* -0.304** -0.148 -0.052
(0.134) (0.135) (0.118) (0.037)

Pill Mill Bill 0.079 0.064 0.026 -0.051
(0.110) (0.073) (0.109) (0.122)

Observations 3070 3070 3070 3070
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Table 13: Poisson Regression: Effect of PDMP on Heroin Incidents

Count Rate per 100,000
Panel A: All Counties
PDMP 0.123* 0.1833**

(0.086) (0.092)
Mandate -0.047 0.070

(0.104) (0.138)
Pill Mill Bill 0.051 0.326

(0.212) (0.277)
Observations 67,092 66,948

Panel B: Top 10% Oxycodone Dense Counties
PDMP 0.231** 0.380

(0.118) (0.278)
Mandate 0.131 0.497***

(0.093) (0.164)
Pill Mill Bill -0.450 -0.734**

(0.277) (0.301)
Observations 8,088 8,076

Robust errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 1: A Map of NIBRS Data Coverage

Notes:The map shows the 735 counties for which there exists a complete monthly panel dataset of counts of
crimes from 2004 to 2014 within the NIBRS dataset.

Figure 2: The Distribution of Oxycodone Per Capita Across Counties

Notes: The figure plots the distribution of 2004 oxycodone density across 735 counties. The top 10% most
oxycodone dense counties have greater than 63.15 milligrams of oxycodone per capita per month, equivalent
to 6-12 weak dose pills or 2-3 strong dose pills per month for each resident. The PDMP has larger effects
on counties that have higher pre-policy (year 2004) oxycodone density. Heroin incident data: NIBRS.
Oxycodone density data: DEA ARCOS.

42



Figure 3: NIBRS County Oxycodone Density

The figure displays the NIBRS-covered counties colored by oxycodone milligrams per person. Darker counties
are more oxycodone dense. Oxycodone density data: DEA ARCOS.

Figure 4: PDMP on Medicaid Oxycodone Outcomes Over Time

Notes: The figures plot coefficients on lag and lead policy indicators from difference-in-differences models on
logged amounts of oxycodone by Medicaid prescriptions (milligrams per capita). The dependent variable is
restricted to weak dose oxycodone in the center graph and strong dose oxycodone in the right graph. The
graphs correspond to event-study adaptations of Columns (1), (2) and (3) of Table 7 and models include
state and time fixed effects, controls, population weights, and state-specific linear time trends. Data spans
50 states plus the District of Columbia quarterly from 2000-2015. Prescription Data: Medicaid SDUD
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Figure 5: PDMP on Aggregate Oxycodone Shipments

Notes: Same as Figure 4, except using aggregate shipments of oxycodone from ARCOS. The trends graphs
correspond to Column (5) of Table 7 and includes state and time fixed effects, controls, population weights,
and state-specific linear time trends. The dataset spans 50 states plus the District of Columbia quarterly
from 2000-2015. Aggregate Shipment Data: DEA ARCOS
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Figure 6: PDMP on Heroin Incidents Over Time

Notes: Graphs plot the coefficients on PDMP lags and leads indicators in a difference-in-differences regression
on heroin incidents per 100,000 in a county-month pair. The top graph shows the event study of the PDMP
on heroin incidents across all counties. The lower graph shows the event study of the PDMP on heroin
incidents in the most oxycodone-dense counties. Event study regressions include month and county fixed
effects, controls, and county-specific linear time trends and population analytic weights. The county data
spans 735 counties over 26 states monthly from 2004-2014. Heroin incident data: NIBRS. Oxycodone density
data: DEA ARCOS.
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Figure 7: The Effect of the PDMP on Possible Heroin Dealers

The event study graphs plot the effect of the PDMP on the rate over time of incidents involving possible
heroin dealers in all counties and in counties with high oxycodone density. A possible heroin dealer incident
is one where individuals 1.) are carrying more than 2 grams of heroin, 2.) Are carrying between 1 and
2 grams of heroin and a large amount of another drug, or 3.) Are carrying any heroin and were entered
in the data as selling any drug. Weighted regressions include county and time fixed effects, controls, and
county-specific linear time trends. Data source: NIBRS.
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Figure 8: The Effect of the PDMP on Opiate Incidents

The graphs display the event study of the PDMP on Opiate Incidents per 100,000 population. The factor
model is used because difference-in-differences specifications do not pass the parallel trends test, due to
non-linear county-specific time trends that are captured using the factor model.
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Figure 9: The Nationwide Time Trend in Heroin Incidents, Obtained from the IFE Factor
Model

Notes: The figure shows the average time trend (time fixed effects) in the heroin incident rate from the IFE
factor model. Heroin incident data: NIBRS.

Figure 10: Factor 1 From the Interactive Fixed Effect Factor Model on Heroin Incident Rate

Notes: The graph plots the IFE factor model’s factor 1 time trend. The red line marks the OxyContin
reformulation that made it harder to abuse. Within the IFE factor model, Factor 1 is the time trend that
accounts for the most residual variance.
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Figure 11: Counties by Factor 1 Loadings

Notes: The map displays counties from the NIBRS data colored by each county’s sensitivity to the Factor 1
time path from the interactive fixed effects factor model as shown in Figure 10. Factor 1 seems to pick up
differences in county responses to the OxyContin reformulation, and the dark-colored counties perhaps have
exceptional sensitivity to the reformulation.

Figure 12: Heroin Incident Rate in Two Example Counties

Notes: The graph compares the raw heroin incident rate over time in 2 counties with approximately 100,000
population. Spotsylvania County, VA is assigned a high factor 1 loading and Florence County, SC is assigned
an average factor 1 loading under the IFE factor model. The factor 1 time trend captures a non-linear increase
in the heroin incident rate over time, as seen in Figure 10, and Spotsylvania County’s data corresponds with
factor 1’s more dramatic exponential growth in the heroin incident rate over time.
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Figure 13: The Detrended Heroin Incident Rate in Two Example Counties

Note: The figure shows the heroin incident rate with the national time trends, county fixed effects, and
controls removed, for Spotsylvania County, VA and Florence County, SC, which both have approximately
100,000 residents. The figure suggests that the difference-in-difference specification alone does not capture
the non-linear increase in the heroin incident rate in Spotsylvania County and counties like it. Spotsylvania
and similar counties are assigned a high factor 1 loading under the IFE factor model, and factor 1 controls
for a non-linear county-specific growth rate in heroin incidents. In contrast, Florence County, SC follows the
national time trend more closely and is not assigned a high factor 1 loading.
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Figure 14: Factor 2 From the Interactive Fixed Effect Factor Model on Heroin Incident Rate

The figure plots the second factor from the IFE factor model on the rate of heroin incidents. The red line
marks the reformulation of OxyContin, which made it harder to abuse. Time periods 100-105 correspond to
April to October 2012.
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Appendix A Additional Robustness and Model Speci-

fications: Prescription Outcomes

Tables A1, A2, A3, A4, A5, and A6 list the effects of the PDMP, Mandate and Pill Mill

Bills on Medicaid oxycodone, Medicaid weak oxycodone, Medicaid strong oxycodone, Medi-

caid hydrocodone, ARCOS oxycodone, and ARCOS hydrocodone usage, respectively, under

different model specifications. In each table, the specifications include simple ordinary least

squares in Column (1) in each of the tables, then the addition of fixed effects, controls, and

linear time trends in Columns (2) through (4). Column (5) in each table drops analytic

weights from the models, Column (6) drops data past 2012 to eliminate any possible con-

founding influences posed by the implementation of the Affordable Care Act, Column (7)

excludes Florida (the state that was considered the “pill mill capital” of the US in the 2000s)

from the model, and Column (8) lists coefficients from the interactive fixed effects factor

model applied to prescription outcomes. Results are fairly consistent across model specifi-

cations, with Medicaid oxycodone, strong oxycodone, and ARCOS oxycodone responding to

the policies across specification. However, PDMP estimates lose both power and magnitude

when Florida is excluded from models, although magnitudes of coefficients are still negative.

Results of the PDMP on heroin incidents in the NIBRS do not use Florida for identification.

Turning to the Mandate policy, Figure A1 graphs its effects on prescription outcomes

under a difference-in-differences specifications with fixed effects and controls but not includ-

ing state-specific linear time trends. Non-zero lead coefficients characterize all six graphs,

which is a problem. The addition of linear time trends does not bring the lead coefficients

to zero. Therefore each of the graphs in Figure A1 suggest a violation of the parallel trends

assumption required for causal inference in difference-in-differences models. As the lead co-

efficients are statistically significantly different from zero, the treated counties did not trend

similarly to untreated counties in the time prior to the mandate. Because of this failure of

the parallel trends assumption, I cannot draw causal inferences regarding the effects of the

Mandates on outcomes.
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Table A1: PDMP on Log Medicaid Oxycodone Across Model Specifications

(1) (2) (3) (4) (5) (6) (7) (8)
OLS FE Controls LTT NoWt NoACA DropFL Factor

PDMP -0.257∗∗∗ -0.223 -0.246∗ -0.188 -0.236 -0.221 -0.116 -0.148∗

(0.0413) (0.160) (0.128) (0.144) (0.152) (0.147) (0.142) (0.0858)

Mandate 0.915∗∗∗ 0.431∗∗ 0.342∗∗ 0.141 0.133 0.133 0.0718 0.217
(0.111) (0.170) (0.145) (0.153) (0.278) (0.134) (0.143) (0.141)

Pill Mill Bill -0.666∗∗∗ -0.366∗ -0.190 -0.186 0.0258 -0.118 -0.0589 -0.031
(0.131) (0.206) (0.154) (0.165) (0.223) (0.152) (0.160) (0.253)

Observations 2791 2791 2783 2783 2783 2582 2727 2714

Fixed Effects X X X X X X X
Controls X X X X X X
Linear Trends X X X X h̄
Weights X X X X X X
Drop 2014 on X
Drop Florida X
Factor Model X

Standard errors in parentheses, clustered by state
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. h̄: The interactive fixed effects factor model flexibly nests time trends.
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Table A2: PDMP on Log Medicaid Weak Dose Oxycodone, Across Model Specifications

(1) (2) (3) (4) (5) (6) (7) (8)
OLS FE Controls LTT NoWt NoACA DropFL Factor

PDMP -0.289∗∗∗ -0.0438 -0.0813 -0.0341 -0.0760 -0.0523 -0.0240 -0.050
(0.0417) (0.167) (0.146) (0.153) (0.171) (0.163) (0.147) (0.047)

Mandate -0.253∗∗∗ -0.348∗∗ -0.350∗∗ -0.247 -0.282∗ -0.300∗ -0.160 0.0891
(0.165) (0.164) (0.164) (0.159) (0.272) (0.165) (0.157) (0.114)

Pill Mill Bill -1.042∗∗∗ -0.359∗∗ -0.115 -0.0462 -0.00389 -0.0132 -0.0307 -0.007
(0.174) (0.158) (0.110) (0.137) (0.190) (0.119) (0.159) (0.177)

Observations 2790 2790 2782 2782 2782 2581 2726 2713

Fixed Effects X X X X X X X
Controls X X X X X X
Linear Trends X X X X h̄
Weights X X X X X X
Drop 2014 on X
Drop Florida X
Factor Model X

Standard errors in parentheses, clustered by state
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. h̄: The interactive fixed effects factor model flexibly nests time trends.
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Table A3: PDMP on Log Medicaid Strong Dose Oxycodone, Across Model Specifications

(1) (2) (3) (4) (5) (6) (7) (8)
OLS FE Controls LTT NoWt NoACA DropFL Factor

PDMP -0.253∗∗∗ -0.348∗∗ -0.350∗∗ -0.247 -0.282∗ -0.300∗ -0.160 -0.172∗∗

(0.0417) (0.167) (0.146) (0.153) (0.171) (0.163) (0.147) (0.077)

Mandate 0.790∗∗∗ 0.409∗∗ 0.344∗∗ 0.120 0.0807 0.0301 0.0390 0.106
(0.0953) (0.177) (0.145) (0.155) (0.234) (0.145) (0.138) (0.166)

Pill Mill Bill -0.572∗∗∗ -0.341 -0.238 -0.226 0.110 -0.157 -0.0831 -0.072
(0.121) (0.212) (0.173) (0.190) (0.249) (0.172) (0.184) (0.225)

Observations 2766 2766 2758 2758 2758 2557 2702 2692

Fixed Effects X X X X X X X
Controls X X X X X X
Linear Trends X X X X h̄
Weights X X X X X X
Drop 2014 on X
Drop Florida X
Factor Model X

Standard errors in parentheses, clustered by state
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. h̄: The interactive fixed effects factor model flexibly nests time trends.
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Table A4: PDMP on Log Medicaid Hydrocodone, Across Model Specifications

(1) (2) (3) (4) (5) (6) (7) (8)
OLS FE Controls LTT NoWt NoACA DropFL Factor

PDMP 0.0833 -0.0740 -0.0530 -0.111 -0.0817 -0.0618 -0.150 0.067
(0.0544) (0.216) (0.135) (0.115) (0.101) (0.107) (0.111) (0.090)

Mandate -0.582∗∗ -0.380 -0.208 -0.308∗ -0.297 -0.471∗ -0.266 -0.355∗

(0.243) (0.344) (0.184) (0.184) (0.195) (0.242) (0.185) (0.194)

Pill Mill Bill -0.0384 -0.187 0.0843 -0.0575 -0.156 -0.0165 -0.160 -0.121
(0.117) (0.300) (0.192) (0.142) (0.232) (0.133) (0.179) (0.208)

Observations 2782 2782 2782 2782 2782 2581 2726 2714

Fixed Effects X X X X X X X
Controls X X X X X X
Linear Trends X X X X h̄
Weights X X X X X X
Drop 2014 on X
Drop Florida X
Factor Model X

Standard errors in parentheses, clustered by state
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. h̄: The interactive fixed effects factor model flexibly nests time trends.
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Table A5: PDMP on Log ARCOS Oxycodone, Across Model Specifications

(1) (2) (3) (4) (5) (6) (7) (8)
OLS FE Controls LTT NoWt NoACA DropFL Factor

PDMP 0.124∗∗∗ -0.0894∗ -0.0814 -0.0847∗∗ -0.0584∗∗ -0.124∗∗ -0.0256 -0.032∗

(0.0436) (0.0499) (0.0509) (0.0401) (0.0291) (0.0510) (0.0221) (0.017)

Mandate 0.428∗∗∗ 0.193∗∗ 0.157∗∗ -0.0862 -0.0935∗∗ -0.0591 -0.145∗∗∗ -0.037
(0.0593) (0.0785) (0.0589) (0.0556) (0.0445) (0.0549) (0.0376) (0.041)

Pill Mill Bill -0.197∗∗∗ -0.290∗∗∗ -0.276∗∗∗ -0.210∗∗ -0.115 -0.173 -0.0575 -0.024
(0.0760) (0.107) (0.101) (0.0970) (0.117) (0.105) (0.0495) (0.063)

Observations 3264 3264 3153 3153 3153 2594 3090 3070

Fixed Effects X X X X X X X
Controls X X X X X X
Linear Trends X X X X h̄
Weights X X X X X X
Drop 2014 on X
Drop Florida X
Factor Model X

Standard errors in parentheses, clustered by state
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. h̄: The interactive fixed effects factor model flexibly nests time trends.
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Table A6: PDMP on Log ARCOS Hydrocodone, Across Model Specifications

(1) (2) (3) (4) (5) (6) (7) (8)
OLS FE Controls LTT NoWt NoACA DropFL Factor

PDMP 0.414∗∗∗ 0.0580 -0.00409 0.0180 0.0264 0.0121 0.0247 -0.021
(0.0274) (0.0354) (0.0263) (0.0183) (0.0159) (0.0200) (0.0184) (0.014)

Mandate -0.372∗∗∗ -0.148 -0.165∗∗∗ -0.125∗∗∗ -0.0905∗∗∗ -0.0936∗ -0.119∗∗∗ -0.060∗∗

(0.0735) (0.0940) (0.0390) (0.0355) (0.0309) (0.0471) (0.0345) (0.028)

Pill Mill Bill 0.534∗∗∗ 0.000350 -0.0129 -0.00830 -0.0198 -0.00362 0.0175 -0.0225
(0.0561) (0.102) (0.0506) (0.0297) (0.0298) (0.0171) (0.0343) (0.031)

Observations 3260 3260 3149 3149 3149 2590 3086 3066

Fixed Effects X X X X X X X
Controls X X X X X X
Linear Trends X X X X h̄
Weights X X X X X X
Drop 2014 on X
Drop Florida X
Factor Model X

Standard errors in parentheses, clustered by state
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. h̄: The interactive fixed effects factor model flexibly nests time trends.
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Figure A1: The Effect of Mandated PDMPs on Medicaid and ARCOS Prescription Outcomes

The graphs display coefficients on Mandate lag and lead indicators in a difference-in-differences model in-
cluding state and quarter fixed effects and controls, but not including state-specific trends. Note the non-zero
lead coefficients.
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Appendix B Additional Model Robustness: Heroin Re-

sults

The main text divides counties into “high oxycodone density” and “low oxycodone den-

sity” by cutting on the 90th percentile of the distribution of oxycodone per capita. Figure

B2 tests the robustness of the significant increase in heroin incidents using different high

density and low density cutoffs (other than the 90th percentile). To clarify, the top graph

plots policy coefficient estimates on the bottom percentage of counties classified as “low”

oxycodone-density counties, with the horizontal axis plotting which percentage cutoff was

used to determine which counties were classified as “low” oxycodone-dense counties. The

measured effect of the PDMP on the bottom 80-90% (excluding more oxycodone-dense coun-

ties) of the data is about zero. The lower graph plots the PDMP effect on heroin incidents

within “high” oxycodone-density counties. The PDMP coefficients become significant at the

95% confidence level at about the 70th percentile, so using the top 30% of counties as “high

density”. These show 1-1.75 additional heroin incidents per 100,000 population each month

in the top 30% of oxycodone-dense counties.43

Figure B3 tests the robustness of the PDMP effect on heroin incidents on counties with

low versus high oxycodone, under the IFE factor model specification. Similarly to Figure

B2, the top graph plots coefficients on the bottom 5 through 50 percent of counties cut

on oxycodone density, measuring a zero effect of the PDMP. The bottom graph plots the

coefficients for IFE factor models run on the top 50 to 95 percent of counties cut on oxy-

codone density, and measures an increase of 0.2 to 0.6 additional heroin incidents per 100,000

population per month as a result of the PDMP.

Figure B4 plots the event study of the PDMP on heroin incidents across all counties and

in the top 10% of counties based on oxycodone-density using the IFE factor model. This

graph is the IFE factor model analog to Figure 6 (which plots coefficients from a difference-

in-differences model) in the main text. The IFE factor model graphs show similar results

to the difference-in-differences graphs in the main text, but display lead coefficient points

closer to zero, with less of a possible pre-trend. Figures still display an increase in the heroin

incident rate within the most opioid-dense counties after implementation of the PDMP.

43Each plotted point is from a different model run on a different subset of counties in the data, depending
on the high/low oxycodone cutoff.
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Figure B2: Sensitivity of the Estimated Effects on Heroin Incident Rate Using Different
Thresholds to Define High/Low Oxycodone Density Counties

The top figure plots the PDMP estimated coefficients in the less oxycodone dense counties, depending on
the threshold (in oxycodone per capita distribution percentile) used to classify counties as “low oxycodone
dense” counties. The bottom figure plots the PDMP coefficients for the more oxycodone dense counties,
depending on the threshold (in oxycodone per capita distribution percentile) used to classify counties as
“high oxycodone dense” counties. The main tables use the 90th percentile as the cutoff. Coefficients are
obtained by running a difference-in-differences regression (including county and month fixed effects, controls
and analytic weights) on heroin incidents on subsets of counties that are below or above the thresholds.
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Figure B3: Sensitivity of the Estimated Effects on Heroin Incident Rate Using Different
Thresholds to Define High/Low Oxycodone Density Counties: Unweighted Factor Model

Notes: Graphs plot the coefficients on PDMP lags and leads indicators in an interactive fixed effects factor
model on heroin incidents per 100,000 in a county-month pair. The top graph shows the event study of the
PDMP on heroin incidents across all counties. The lower graph shows the event study of the PDMP effects
in the most oxycodone-dense counties. These event study models include controls and fixed effects by month
and county. The county data span 735 counties over 26 states monthly from 2004-2014. Heroin incident
data: NIBRS. Oxycodone density data: DEA ARCOS.
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Figure B4: The Effect of the PDMP on Heroin Incidents Across All Counties and in Most
Oxycodone Dense Counties: Factor Model

Notes: The figure plots event studies of the PDMP on the rate of heroin incidents per 100,000 population
per month across all counties (top graph) and across the most oxycodone-dense counties (bottom graph)
under the IFE factor model specification.
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Appendix C The Effect of PDMPs on Oxycodone by

Strength of Pill

The Medicaid drug data comprises state-by-quarter counts of drugs, classified by NDC code.

The NDC code specifies the strength of drug by dosage units. Oxycodone comes in pills

ranging from 2.5 milligrams to 100 milligrams in the Medicaid data. Table C7 gives sum-

mary statistics of oxycodone amounts dispensed through Medicaid, specified by strength of

pill. The table lists the mean amount of oxycodone per enrollee by pill strength. It also

lists number of pills per enrollee by pill strength. The 5-milligram pills are most common,

making up 44.6% of dispensed pills, but only makes up 17.5% of active-ingredient oxycodone

dispensed through Medicaid. The 30, 40, and 80 milligram pills make up a small fraction of

dispensed pills by number of pills (6.5%, 5.1%, and 3.7% of pills, respectively); however the

large-dose pills make up 14.2%, 12.5%, and 17.3% of oxycodone dispensed.

Figure C5 graphs PDMP coefficients from separate difference-in-differences models on

logged milligrams of oxycodone per Medicaid enrollee as grouped pills of each strength. The

size of each plotted circle is determined by how much of the total dispensed oxycodone comes

in each form of pill. The largest circles–associated with 5, 10, 30, 40, and 80 milligram pills–

correspond to pills that each make up 10% or more of the oxycodone dispensed, medium-sized

points correspond to pills that each make up between 5 and 10% of oxycodone dispensed, and

small points are for pills that each make up less than 5% of dispensed oxycodone milligrams.

The points are different sizes so that a viewer can determine which pill strengths are most

responsible for the aggregated coefficient estimates in Table 7 in the main text. That table

shows a 24.6% reduction in overall oxycodone dispensed, and a 35% decrease in strong-dose

oxycodone (pills with > 10 milligrams of oxycodone) in response to the PDMP. The large

reduction in pills with more than 10 milligrams is driven by large, marginally significant

decreases in the prescription rate of oxycodone dispensed in the form of 30, 40, and 80

milligram pills in response to the PDMP.
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Table C7: Summary Statistics on Medicaid Oxycodone Pills by Milligrams

Pill Strength Mean Mg Per Enrollee Mean Pills Per Enrollee Fraction of Fraction of
Oxycodone Mg Oxycodone Pills

2.5 mg 0.004 0.0016 0.0001 0.000
(0.008) (0.003)

5 mg 6.14 1.228 0.1746 0.446
(5.03) (1.006)

7.5 mg 1.02 0.137 0.0295 0.052
(1.14) (0.153)

10 mg 5.05 0.505 0.1638 0.218
(4.70) (0.470)

15 mg 2.47 0.164 0.0684 0.0592
(3.91) (0.261)

20 mg 3.05 0.153 0.0775 0.061
(3.31) (0.166)

30 mg 5.10 0.170 0.1421 0.065
(8.69) (0.290)

40 mg 5.41 0.135 0.1248 0.051
(5.68) (0.142)

50 mg 0.356 0.007 0.0113 0.003
(0.751) (0.015)

60 mg 0.760 0.013 0.0223 0.006
(0.929) (0.154)

80 mg 7.29 0.091 0.1727 0.0365
(7.10) (0.089)

100 mg 0.498 0.005 0.0122 0.002
(1.03) (0.010)

Oxycodone comes in pills of varying strength. The table contains summary statistics on the mean milligrams of oxycodone

per Medicaid enrollee within each pill strength, the mean number of pills per Medicaid enrollee in each pill strength,

the fraction of total Medicaid oxycodone milligrams administered in each pill strength, and the fraction of total

oxycodone pills given out in each strength. For example, the average Medicaid enrollee receives 6.14 milligrams of

oxycodone in the 5 milligram pill form, equal to 1.228 5-mg-pills per Medicaid enrollee. 5 milligram pills make up 17.5%

of oxycodone milligrams of active ingredient and 44.6% of oxycodone pills covered by Medicaid.

Standard errors are in parentheses. Data source: Medicaid prescription data.
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Figure C5: The Effect of the PDMP on Medicaid Oxycodone by Strength

Notes: The figure plots the effect of the PDMP on logged Medicaid oxycodone per enrollee disaggregated
by pill strength. Each plotted point is associated with a separate regression on milligrams per enrollee
restricted to pills of each strength. Points are sized by the relative frequency of pills in the Medicaid data,
which corresponds to the fraction column in Table C7. “Uncommon Pills” are pills that make up less than
5% of oxycodone, “Common Pills” make up between 5% and 10% of oxycodone, and “Most Common Pills”
are pills that make up for greater than 10% of oxycodone.

Appendix D The Effect of PDMPs on Heroin Crimes:

Offender Characteristics

Results in Table 8 of the main text show that PDMPs increase the rate of heroin incidents

in the top 10% of counties in the distribution of oxycodone per capita. The increase of

1.745 additional heroin incidents per 100,000 population per month is equal to an 87%

increase. This appendix section uses additional detail from the NIBRS incident-level dataset

to identify characteristics of the heroin offenders affected by the policies. The NIBRS dataset

shows that at the baseline, the most common locations for heroin incidents are discount and

department stores, parking lots and garages, homes and residences, and roads including

highways, alleys, streets and sidewalks. These four location categories make up 84% of
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heroin incident locations, whereas the broad category of “other locations” accounts for the

other 16% of heroin incidents.44 Table D8 suggests that the PDMPs are causing heroin

incidents that occur mainly in parking lots and garages (an 84% increase) and on roads

(a 71% increase). Anecdotally, heroin sales take place in parking lots and on roadways,

often with a simple drive-by transaction or a hand-off exchange between vehicles, and the

increase in parking-lot and roadway incidents in response to the PDMP may be a sign of

police encountering more heroin transactions in these locations. Also, police may also be

encountering more erratic driving as a result of heroin use and may possibly be pulling over

greater numbers of under-the-influence offenders in parking lots and on roadways.

Table D9 breaks down the heroin incidents in the most opioid-dense counties by race. It

appears the increase in heroin incidents is driven by increases in the rate of heroin incidents

among white and black offenders, but the measured increases in heroin incidents split up

by race of offender are not individually statistically significant. Table D10 divides heroin

incidents into those committed by male offenders and those committed by female offenders,

and shows a statistically significant increase in the male heroin incident rate in the most

oxycodone-dense counties in response to the PDMP. The point estimate of the increase in

female offender heroin incidents is large in magnitude but is not statistically significant.

Table D11 classifies heroin incidents by age of offender, and shows that PDMPs affect heroin

incidents involving offenders between the ages of 20 and 29, 30 and 39, and 40 and 49.

The increases in heroin incidents among 30-39 year-olds and 40-49 year-olds are statistically

significant at the 5% level. Overall, white males of a fairly wide range of ages are responding

to the PDMP.

Finally, Table D12 breaks down heroin incident rates by both race of offender and across

the four most common locations of heroin incidents. This is to examine the effect of the

PDMP on offenses by race and location. The PDMP causes an increase in heroin incidents

with white offenders occurring in parking lots, within homes, and on roadways. The 0.256

and 0.487 increase in parking lot and roadway incidents add to a combined 0.743 additional

heroin incidents by white offenders, which makes up the bulk of the increase of 1.114 addi-

tional white-offender incidents, recorded in previous Table D9. Heroin incidents involving

black offenders in parking lots and roadways also increase in response to the PDMP, with

a combined effect of 0.457 additional heroin incidents, accounting for the bulk of the mea-

sured 0.667 additional black-offender incidents in Table D9. In addition, there is a small but

statistically significant increase in the rate of heroin incidents involving Hispanic offenders

in parking lots.

44The “other locations” category includes 54 other types of location categories in the NIBRS and are not
listed here.
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Table D8: Effect of PDMP on Heroin Incidents in High Oxycodone Density Counties: By
Location of Offense

(1) (2) (3) (4) (5)
Disc. Store Parking Lot Home Road Other

PDMP -0.00228 0.504∗ 0.0579 0.724∗∗ 0.121
(0.0102) (0.255) (0.0621) (0.331) (0.123)

Mandate 0.0330∗∗∗ 0.484∗∗∗ 0.142∗∗∗ 0.562∗∗∗ 0.313∗∗∗

(0.00709) (0.112) (0.0424) (0.147) (0.0827)

Pill Mill Bill -0.0557∗∗∗ -0.764∗∗ -0.249∗∗ -0.999∗∗ -0.537∗∗∗

(0.0114) (0.284) (0.107) (0.360) (0.153)

Observations 9588 9588 9588 9588 9588
Fixed Effects X X X X X
Fixed Effects X X X X X
Controls X X X X X
Popln. Weight X X X X X
Linear Time Trends
Mean Rate Per 100,000 Pop 0.0347 0.600 0.1702 1.014 0.278

Standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The most common locations of crimes in the NIBRS are residences/homes, highways/roads/alleys,

department/discount stores, and parking lots/garages, which make up 71% of offenses, and 84%

of heroin incidents. The “other” location category makes up the remaining 29% of offenses or 16%

of heroin incidents, respectively.
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Table D9: Effect of PDMP on Heroin Incidents in High Oxycodone Density Counties: By
Race of Offender

(1) (2) (3) (4)
White Black Hispanic Other

PDMP 1.114 0.667 0.156 0.0161
(0.666) (0.469) (0.101) (0.0115)

Mandate 1.472∗∗∗ 0.496∗ 0.0412 0.0355∗∗

(0.278) (0.240) (0.0947) (0.0160)

Pill Mill Bill -2.432∗∗∗ -1.080∗∗ -0.109 -0.0484∗

(0.788) (0.472) (0.138) (0.0241)

Observations 9588 9588 9588 9588
Fixed Effects X X X X
Controls X X X X
Popln. Weight X X X X
Linear Time Trends
Mean Rate Per 100,000 Pop 1.595 0.781 0.379 0.126

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table D10: Effect of PDMP on Heroin Incidents in High Oxycodone Density Counties: By
Sex of Offender

(1) (2)
Male Female

PDMP 1.432∗ 0.508
(0.753) (0.293)

Mandate 1.559∗∗∗ 0.444∗∗∗

(0.307) (0.132)

Pill Mill Bill -2.634∗∗ -1.002∗∗

(0.907) (0.334)

Observations 9588 9588
Fixed Effects X X
Controls X X
Popln. Weight X X
Linear Time Trends
Mean Rate Per 100,000 Pop 2.208 0.574

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table D11: Effect of PDMP on Heroin Incidents in High Oxycodone Density Counties: By
Age of Offender

(1) (2) (3) (4) (5) (6)
10-19 20-29 30-39 40-49 50-59 60+

PDMP 0.143 1.067 0.479∗∗ 0.174∗∗ 0.0213 0.0124
(0.0900) (0.614) (0.218) (0.0735) (0.0179) (0.00770)

Mandate 0.0519 1.131∗∗∗ 0.454∗∗∗ 0.202∗∗∗ 0.0808∗∗∗ 0.0222∗∗∗

(0.0411) (0.255) (0.110) (0.0510) (0.0161) (0.00378)

Pill Mill Bill -0.212∗ -2.141∗∗ -0.854∗∗ -0.219∗∗∗ -0.0855∗∗∗ -0.0226∗∗

(0.115) (0.720) (0.293) (0.0702) (0.0220) (0.0101)

Observations 9588 9588 9588 9588 9588 9588
Fixed Effects X X X X X X
Controls X X X X X X
Popln. Weight X X X X X X
Linear Time Trends
Mean Rate Per 100,000 Pop 0.232 1.252 0.668 0.393 0.130 0.026
Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table D12: Effect of PDMP on Heroin Incidents by Race and Location Of Offender: Across
High Oxycodone Density Counties

(1) (2) (3) (4) (5)
Disc. Store Parking Lot Home Road Other

PDMP on White -0.00474 0.256∗∗ 0.0591∗∗ 0.487∗∗∗ 0.0604
(0.0101) (0.0982) (0.0269) (0.146) (0.0599)

PDMP on Black 0.00180 0.230∗∗ 0.00467 0.227∗∗∗ 0.0655∗

(0.00368) (0.0895) (0.0239) (0.0846) (0.0373)
PDMP on Hispanic 0.000133 0.0490∗ 0.000709 0.0580 0.00482

(0.00184) (0.0255) (0.00437) (0.0508) (0.00598)
PDMP on Other/Unrecorded -0.000961 0.00444 0.000218 0.00387 0.00615

(0.000923) (0.00469) (0.00298) (0.00238) (0.00727)
N 9588 9588 9588 9588 9588

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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