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Abstract

We construct a monetary economy with heterogeneity in discounting and consumption risk. Agents

can insure against this risk with both money and nominal government bonds, but all trades

must be monetized. We demonstrate that a deflationary policy à la Friedman cannot sustain the

efficient allocation. The reason is that no-arbitrage imposes a stringent bound on the return money

can pay. The efficient allocation can be sustained when bonds have positive yields and–under

certain conditions–only if they are illiquid. Illiquidity–meaning bonds cannot be transformed

into consumption as efficiently as cash–is necessary to eliminate arbitrage opportunities.
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1 Introduction

A considerable amount of theoretical work, based on disparate modeling approaches,

supports the notion that allocative efficiency in a monetary economy hinges on a deter-

ministic deflationary policy, known as the ‘Friedman rule.’2 The result revolves around

the idea that if impatient agents must do business with money and must hold cash in

their portfolios, then deflation is socially desirable as it lessens the (opportunity) cost of

holding cash.

In this theoretical literature, interest-bearing asset trades do not seem to play an es-

sential role in policy execution; lump-sum transfers do the trick. Yet, in practice monetary

interventions take the form of open market operations in which cash trades for less liquid

interest-bearing government assets. Agents buy bonds when they have excess liquidity,

and sell them as the need for transactions balances arises. We attempt to reconcile these

observations with the theory, posing the following questions. Does the Friedman rule al-

ways lead to a first best? If, not what is the reason and would government liabilities other

than money help improve the allocation? If so, should these assets be illiquid? Clearly,

the answers hinge on the specification of the economic environment.

We work with a spatially separated model (as in Townsend, 1980) where money has a

fundamental allocative role. Agents face random consumption needs but–due to carefully

specified environmental frictions (as in Aliprantis, Camera and Puzzello, 2004)–are phys-

ically prevented from lending or borrowing from each other and from sharing information

over time. Thus, trade must be monetized and a sudden consumption shock generates an

immediate need for cash. Further, we draw from the two-market formulation of Lagos and

Wright (2002) to achieve degeneracy in asset holdings and–as suggested by Berentsen,

Camera and Waller (2003)–we work under the assumption of competitive markets.

Two features set apart this model from these related monetary frameworks. First,

agents need not rely exclusively on cash to insure against consumption shocks. They can

also acquire government nominal bonds, and liquidate them for cash before maturity if a

consumption need arises. Second, the model accounts for the possibility of a natural form

of heterogeneity in that agents differ in their rate of time preference and in their exposure

to consumption risk.

We prove two results. First, we demonstrate that deterministic deflations under zero

interest rates–that is under the Friedman rule–cannot sustain the stationary efficient

allocation. The reason is, under zero interest rates, agents insure against consumption

2E.g. the spatial economy of Townsend (1980) or Williamson (2004), money in the utility function or

transaction costs models (Chari et al.,1996), the search models of Shi (1997) or Lagos and Wright (2003).
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shocks with cash. Unfortunately, a deflationary policy that gives cash the return desired

by the most impatient agents leaves the door open to arbitrage opportunities for everyone

else. This constrains the equilibrium deflation to the lowest discount rate–much as in

Becker (1980)–so that impatient agents will tend to under-insure.

Interestingly, if bonds pay no interest (equivalently, if money is the only asset avail-

able), then in equilibrium every agent holds positive cash balances. This is unlike Becker–

where the most patient agents hold the entire stock of assets (capital)–because money

in our model is essential to execute trades. Of course, the more impatient hold less of

it, which is detrimental to trading efficiency. This result appears to be quite general and

should hold in any environment with heterogeneity in discounting where money has an

explicit medium-of-exchange role.

Then, we show that the efficient allocation can be sustained when bonds pay a positive

yield but–under certain conditions–only if bonds are sufficiently illiquid. That is to say,

only if bonds cannot be transformed into consumption as quickly and efficiently as cash.

If the government prices bonds correctly, agents fully insure against consumption shocks

by holding illiquid bonds that are sold for cash once a consumption need arises. In short,

we need a friction (illiquidity) to cure an inefficiency, much as in Kocherlakota (2001).

When is illiquidity a necessary friction? When the most patient agents are also those

who experience the greatest incidence of consumption shocks. Illiquidity acts as a propor-

tional tax that lowers the bond’s expected return according to the anticipated incidence of

consumption shocks. Thus, illiquidity affects the bonds’ expected return unequally across

agent types. By selecting appropriate bond yield and illiquidity parameters, the policy-

maker can therefore manipulate the rates of return in order to induce agents to perfectly

insure against consumption risk while removing possible arbitrage opportunities.

2 Related Literature

Our work complements the literature concerned with the optimality of the Friedman

rule. Among such papers is Faig (1988) who finds that the Friedman rule is optimal in

a shopping-time model where money reduces transactions costs. Freeman (1993) con-

firms this result for a model of infinitely lived agents deriving utility from holding real

balances. However, in overlapping generation models with dynastic preferences and no

intergenerational transfers, the Friedman rule is optimal only if bequests are positive.

Zero nominal rates are also optimal in Williamson’s (1996) cash-in-advance, sequential

markets model, unless there are money demand (preference) shocks. In that case benefits

arise from an accommodating monetary stance so the Friedman rule can be suboptimal. In
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Paal and Smith’s (2000) growth model shocks to agents’ “liquidity preferences” create an

insurance role for banks. At high nominal interest rates banks economize on reserves and

provide less liquidity, while at low rate they hold higher reserves but fund little investment

in capital. The trade-off between liquidity provision against higher growth implies that

the Friedman rule is suboptimal when the maximal rate of real growth it can sustain is at

or below the real interest rate. Random preferences over future consumption also imply

suboptimality of the Friedman rule in Berentsen and Strub (2004).

Phelps (1973) argues against deflationary policies from a pure optimal taxation per-

spective, noting that the Friedman rule leads to increasing other (more distortionary)

taxes, to replace the lost revenue. This contrasts with Kimbrough’s (1986) finding that

the Friedman rule is optimal even under distortionary taxes since–he argues–money is

an intermediate good and as such it should not be taxed.

da Costa and Werning (2003) also suggest the Friedman rule can be optimal under dis-

tortionary taxation. So do Chari, Christiano, and Kehoe (1996), in a cash-credit model,

a money-in-the-utility-function model and a shopping time model. Their conclusion is

confirmed by Correia and Tales (1996)–given distortionary taxes–but is questioned by

Mulligan and Sala-i-Martin (1997) who argue that some assumptions in Chari et al (1996)

are not based on micro-founded theories of money demand, and give examples that over-

turn their results. In addition, they conduct an empirical analysis suggesting that in the

U.S. the optimal inflation rate is small, but positive.

We, too, consider different nominal interest rules but–despite having non-distortionary

taxes–a deflationary policy is not a first best in our model. However, it unambiguously

generates beneficial effects. In short, the Friedman rule is always a second best.

Our paper contributes also to research concerned with the allocative role of government-

supplied illiquid assets. For instance, Woodford (1990) shows that government borrowing

has beneficial effects, for example it smooths endowment fluctuations, when some face

illiquidity problems (borrowing constraints). Kocherlakota (2001) argues that govern-

ment illiquid bonds are essential, when unobservable preferences hinder a more efficient

allocation of consumption. Such bonds allow cash transfers from agents with less to more

pressing consumption needs. Shi (2003), studies how interest rates and output depend on

bonds’ endogenous illiquidity (the fraction of unmatured bonds held by buyers). He finds

that illiquid bonds can yield higher welfare and higher nominal interest rates.

We too motivate disparities in desired cash holdings via unequal preferences. However,

we have no search but competitive markets, unlike Shi; unlike Kocherlakota, private

information does not play a role and the Friedman rule is suboptimal. Our notion of
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illiquidity also differs, as in our model bonds cannot be directly exchanged for goods but

can be readily cashed in, at a cost.

3 The Model

We consider a discrete-time production economy with a unit continuum of heteroge-

neous infinitely-lived agents. They are subject to idiosyncratic trading risk and participate

in an infinite sequence of markets characterized by spatial separation and enforcement lim-

itations. We adopt these modeling features as they generate an explicit transactions role

for currency. However, they also generate complicated history-dependent distributions of

assets (e.g. Camera and Corbae, 1999). To ease these complications, we specify a phys-

ical environment based on the meeting technology formalized in Aliprantis, Camera and

Puzzello (2004), and we draw from the trading and preference formulation of Lagos and

Wright (2003).

3.1 Physical Environment

The physical environment is in the tradition of Townsend (1980). It has features that

preclude borrowing and lending among agents, while giving an explicit role to money in

facilitating spot exchange.

At each date countably many trading groups are formed (think of these as islands).

Each group consists of an identically large number of agents, with an identical proportion

of agent types. Trading groups are spatially and informationally separated in that an

agent can only interact and communicate with his current groupmates. Everyone is in

some trading group at any point in time, but obstacles to the flow of information and

resources preclude borrowing/lending among agents. Precisely, agents stay in the same

trading group only once and move across groups in a way that severs all possible direct

and indirect links among traders. Especially, any two agents meet only once and their

histories evolve in such a way that the members of any trading group are anonymous.

That such a theoretical construct exists, is proved in Aliprantis et al. (2004).

As in Lagos and Wright (2003), two goods markets open and close sequentially on

each island, at each date. As in Berentsen, Camera and Waller (2003), the markets are

competitive. A different perishable good can be produced on each market, a specialty good

in market one, and a general good in the other. Also, the first market is characterized by

idiosyncratic trading risk, while the second is not. Specifically, we assume two types of

agents j = H,L in proportion ρ and 1 − ρ. These agents differ as follows. The discount

factors βj satisfy 0 < βL < βH < 1 and the probabilities αj that a type j trades in the first

market satisfy 0 < αL < αH ≤ 1. These trading shocks are drawn at the beginning of each
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period. Once on market one, consumption and production are equally likely and mutually

exclusive, so a trader either desires the good or can produce it; this generates idiosyncratic

consumption risk. In short, the more patient agents are more actively involved in trade

but are also more actively exposed to consumption risk.

As soon as the first market closes, the second market opens in which everyone partic-

ipates by producing and consuming. Thus, while only ραH + (1− ρ)αL of the population

trades in market one, everyone trades in the second market, and there is always an equal

number of buyers and sellers in each market. Hence, there is no aggregate trading risk. As

in Lagos and Wright (2003), it is assumed that those who desire a specialty good derive

utility u(c) from c ≥ 0 consumption, while producers of cs ≥ 0 specialty goods suffer disu-
tility −cs. Agents derive utility U(q)− qs from q ≥ 0 consumption and qs ≥ 0 production
of the general good. The functions u and U satisfy the standard Inada conditions and

u (0) = U (0) = 0. Also, let c∗ be the solution to u (c) = 1 and let q∗ be the solution to
u (q) = 1.

3.2 Assets and the Government

Given the structure of the model, specialty goods trade must be monetized. We assume

a government is the sole supplier of fiat currency available in the amountMt > 0 at the

beginning of date t.We letMt = πMt−1 be the deterministic law of motion of the money
stock. As in Lucas (1980), we assume lump-sum cash transfers/taxes, denoted Tt, to keep

the announced rate of growth constant. These occur in the second market soMt cash is

available in market two of period t− 1.
The government also buys and sells one-period nominal bonds having two distinctive

features (similar to U.S. Savings bonds). First, they are non-negotiable claims to currency;

bonds cannot be directly exchanged for goods and can be redeemed only by their owner.

To formalize it, assume bonds are intangible (hence non-transferable) assets, ownership of

which is recorded by the government. Of course, the government can credibly commit to

repayment, as it can print currency. Second, bonds are illiquid in that early redemption

may come at a cost and cannot involve fractions of the asset. Specifically, bonds are

issued in market two at price pA ≤ 1 and mature the following period (in market two)
paying off one unit of money. Unmatured bonds can be redeemed for p ≤ 1 money by
traders in market one. Hence, p naturally captures the notion of illiquidity as the cost of

immediate execution of a trade: 1− p is lost to convert a bond into immediate cash, at

the beginning of a period.

4 Stationary Monetary Allocations
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We start by indicating the timing of events in any period t for an agent type j. He

enters t with portfolio Ωj,t = (Mj,t, Aj,t) listing non-negative amounts of money and bonds

bought with cash in market two of t − 1. Then, the trading shock is realized, denoted
k = n, s, b, i.e., n if he cannot trade and b or s if he can buy or sell. If he trades in market

one he can choose to liquidate his bonds. As soon as market one closes, the agent enters

market two with portfolio Ωk,j,t = (Mk,j,t, Ak,j,t).

We denote pi,t the price of goods in market i = 1, 2. In market one we denote cj,t the

consumption of a buyer of type j, and denote ct the production of any seller. In market

two, qt denotes consumption of any buyer, and qk,t production of those who experienced

shock k.3 Of course, liquidation of bonds is desirable only if cash is needed to consume

in market one. Thus, without loss in generality we let

Ab,j,t ∈ {0, Aj,t} and As,j,t = An,j,t = Aj,t (1)

Mb,j,t =Mj,t + p (Aj,t −Ab,j,t)− p1,tcj,t, Ms,j,t =Mj,t + p1,tct, Mn,j,t =Mj,t. (2)

In what follows, we focus on stationary monetary outcomes in which consumption of

a buyer is time-invariant and money has constant positive value. In doing so we use the

price in market two, p2,t, as our reference price (this is without loss in generality, as we

later prove). Since market one consumption depends on the size and composition of the

agent’s savings, these two elements must be constant in a stationary equilibrium:

Mj,t

p2,t
=
Mj,t+1

p2,t+1
and

pAAj,t
p2,t

=
pAAj,t+1
p2,t+1

.

At the end of t − 1 aggregate nominal savings must equal the amount of cash available,
i.e.,

ρ(MH,t + pAAH,t) + (1− ρ)(ML,t + pAAL,t) =Mt

so that in a stationary equilibrium aggregate real balances are time-invariant and inflation

equals the money stock’s rate of growth:

Mt−1
p2,t−1

=
Mt

p2,t
⇒ p2,t
p2,t−1

=
Mt

Mt−1
= π. (3)

3Later it will be evident this notation is not restrictive. Sellers have identical and linear cost functions,

so they produce the same quantity in market one. Since portfolios can be heterogeneous across types

and buyers cannot produce, consumption may differ by type in market one. In market two everyone can

produce so consumption is identical across types, and production heterogeneity in equilibrium will only

correspond to heterogeneity in wealth (from idiosyncratic trading schocks) but not differences in type.
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SinceMt =Mt−1π, then {Tt} must be such that

Mt−1π = Tt + ρ MH,t +AH,t − αH
2 (1− p )(AH,t −Ab,H,t)

+(1− ρ) ML,t +AL,t − αL
2 (1− p )(AL,t −Ab,L,t) .

(4)

That is, to sustain the deterministic money growth rate π, the per-capita money transfer

in market two must equal the desired end-of-period cash supply,Mt−1π, minus the cash
available at the beginning of market two. The latter includes initial money balances Mj,t

and money associated to the redemption of bonds in market one or two, Aj,t − αj
2 (1 −

p )(Aj,t−Ab,j,t). Thus, {Tt}∞t=1 is generally not a constant sequence, although it is perfectly
announced since it is based on the asset holdings at the beginning of the period.

In what follows we work with real variables using p2,t as a normalizing factor, denoting

m̄t =
Mt
p2,t
, ωj,t =

Ωj,t
p2,t
, mk,j,t =

Mk,j,t

p2,t
, ab,j,t =

Ab,j,t
p2,t

, τ t =
Tt
p2,t

and pt =
p1,t
p2,t
.

To simplify notation, we omit time subscripts and use ‘ ’ to denote next-period variables.

Hence, real balances (2), at any date t, are

mb,j = mj + p (aj − ab,j)− pcj
ms,j = mj + pc

mn,j = mj .

(5)

We are now ready to study the stationary equilibria. In this framework agents choose

actions in order to maximize their expected discounted lifetime utility from consumption

of goods in market one and two. Thus, given the recursive nature of the problem we can

use a dynamic programming approach to describe the problem faced by a representative

agent of type j at any date. We will let Vj(ωj) be the expected lifetime utility of this

agent when he starts the period with ωj , before trading shocks are realized. Let Wj(ωk,j)

be the expected lifetime utility from entering market two with ωk,j .

4.1 The second market

We use a functional equation to formalize the agent’s problem at the start of market

two. Specifically,

Wj(ωk,j) = max
q,qk,ωj≥0

{U(q)− qk + βjVj(ωj)}

subject to the real resource constraint

q + π(mj + pAaj) = qk +mk,j + ak,j + τ . (6)
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The constrain holds with equality due to non-satiation. The resources available to the

agent partly depend on the realization of the trading shock k, as he has mk,j real balances

carried over from market one, and ak,j receipts from matured bonds. Other resources

are qk non-negative receipts from current sales of general goods and the lump-sum real-

balances transfer τ . These resources can be used to finance current consumption q, to buy

aj bonds at price pA, or simply to carry mj real money balances into tomorrow’s markets

(short-selling is not allowed). Of course, the variable π multiplies aj and mj since these

are nominal assets and nominal prices can vary across dates.

Indeed, the composition of savings will depend on the expected rates of return on cash

and bonds. We emphasize that agents can save only with money or bonds and cannot lend

to each other (in particular, the most patient cannot lend to the less patient) because the

structure of the environment severs all future (direct and indirect) links among current

trade partners.

Rewriting (6) as

qk = q + π(mj + pAaj)− (mk,j + ak,j + τ)

and conjecturing qk ≥ 0, then we have4

Wj(ωk,j) = max
q,ωj≥0

{U(q)− q − π(mj + pAaj) +mk,j + ak,j + τ + βjVj(ωj)}. (7)

A first important result emerges.

Result 1. In a monetary equilibrium

∂Wj(mk,j)

∂mk,j
=

∂Wj(ωk,j)

∂ak,j
= 1 for j = H,L (8)

The result hinges on the linearity of production disutility in market two and the use

of competitive pricing (linear in the quantity sold). Since goods are sold for cash it

follows that the marginal value of any asset in equilibrium must simply reflect the price of

real balances, which is one. The economic implication is the marginal valuations of real

balances and bonds in market two are identical and–most importantly–do not hinge on

the agent’s type, wealth ωk,j or trade shock k.

In short, this model allows us to disentangle the agents’ portfolio choices from their

trading histories since

Wj(ωk,j) = Wj(0) +mk,j + ak,j (9)

4Of course we must verify that qk ≥ 0 for all k in equilibrium. Note also that real balance transfers or
taxes, τ , must also be time-invariant in a stationary equilibrium.
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i.e. the agent’s expected value from having ωk,j at the start of market two is the expected

value Wj(0) from having no wealth (letting ωj = (0, 0) ≡ 0) plus the current real value
of wealth mk,j + ak,j . This implies agents of identical type exit market two with identical

portfolios ωj , independent of their trading histories–much as in Lagos and Wright (2003).

However, different types might choose different portfolios, as we demonstrate next.

Start by observing that by (7) we have q = q∗. That is, under the conjecture qk ≥
0, then everyone can consume the same amount q∗ in market two, independent of his
asset holdings. The reason is agents in market two can produce any amount at constant

marginal cost. Thus we have

Wj(ωk,j) = U(q∗)− q∗ +mk,j + ak,j+ max
ωj≥0

−π(mj + pAaj) + βjVj(ωj) .

The central implication is the agents’ lifetime utility–and the efficiency of the decen-

tralized monetary solution–will hinge on the trades that take place in market one. Since

these depend on the availability of sufficient–and sufficiently liquid–financial resources,

then we expect that efficiency will impinge on the agents’ portfolio decisions ωj . This is

studied next.

Specifically, let λaj ≥ 0 and λmj ≥ 0 denote the Lagrange multipliers on desired real
bonds and money holdings. The first order conditions stemming from the optimal portfolio

choice are

π = βj
∂Vj(ωj)

∂mj
+ λmj

pAπ = βj
∂Vj(ωj)

∂aj
+ λaj

⇒
⇒

1 ≥ βj
π ×

∂Vj(ωj)

∂mj

1 ≥ βj
πpA

× ∂Vj(ωj)

∂aj

(= if mj > 0)

(= if aj > 0).
(10)

Recalling that one unit of real balances buys one unit of consumption, the left hand side of

the expressions simply define the marginal cost of assets. The right hand sides define the

expected marginal benefit from holding the asset–money or bonds–discounted according

to time-preferences and inflation. The weak inequalities reflect an obvious no-arbitrage

requirement: the benefit from buying any asset cannot surpass its cost.

At this point it is important to realize that an asset’s expected value hinges on the

asset’s yield but also on its illiquidity, i.e. the loss from converting it into immediate cash.

This is why bonds’ returns must be discounted by pA (second line), while money is not

(first line). Since agents differ in their frequency of consumption shocks, it follows that

the expected benefit of holding any asset will generally differ across types. To see how,

we must study market one.

4.2 The first market
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The expected lifetime utility of agent j who enters a period with ωj must satisfy

Vj(ωj) = maxcj ,c,ab,j{αj2 [u(cj) +Wj(ωb,j)] +
αj
2 [−c+Wj(ωs,j)]}+ (1− αj)Wj(ωn,j)

(11)

where as a buyer, he is subject to the real resource constraint

pcj ≤ mj + p (aj − ab,j).

The agent maximizes his expected lifetime utility by choosing consumption of specialty

goods cj ≥ 0 (as a buyer) or production c ≥ 0 (as a seller). Traders can also choose to
liquidate their bonds, which of course is a relevant choice for buyers. Thus, consumption

cj hinges on the relative price across markets, p, and on the available liquidity in the

form of real money balances mj and bonds having liquidation value p aj . As bonds must

be liquidated in their entirety, liquidation corresponds to ab,j = 0 (ab,j = aj otherwise).

Clearly, wealthy buyers need not be constrained in their consumption, hence the weak

inequality.

We start by determining the equilibrium relative price p = p1
p2
. To do so, we study a

seller’s choice c to maximize his net continuation payoff, i.e.

max
c
−c+Wj(ωs,j).

The first-order condition is

−1 + ∂Wj(ωs,j)

∂ms,j

∂ms,j

∂c
= 0 ⇒ −1 + p = 0

where the implication follows from (5) and (8).

Result 2. In a monetary equilibrium

p = 1. (12)

Why do we have a unit equilibrium relative price p? Recall that sellers are perfectly

able to substitute market one for market two consumption. A sale in market one at price

p1 increases the cash that can be spent at price p2 in market two. Thus, in equilibrium

there cannot be arbitrage opportunities, p1p2 = 1. Were p1
p2
> 1, then a market one seller

would produce infinite amounts, as production generates constant (unit) marginal costs.

No sale would take place if p1p2 < 1. Thus p = 1, an equilibrium condition we substitute

in every expression that follows.
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Now consider a buyer. Given some choice ab,j , he selects non-negative consumption

to maximize his current and continuation utility, or

max
cj≥0

u(cj) +Wj(ωb,j)

s.t. cj ≤ mj + p (aj − ab,j)

Let λj ≥ 0 be the Lagrange multiplier on the resource constraint (where p = 1). Since

u (0) =∞ we have cj > 0. Recall, from (5), thatmb,j depends on cj . Hence, the first-order

necessary condition is

u (cj) +
∂Wj(ωb,j)

∂mb,j

∂mb,j
∂cj

− λj = 0.

Since ∂Wb,j

∂mb,j
= 1 by (8) and ∂mb,j

∂cj
= −p by (5), then the first order condition is

u (cj) = 1 + λj . (13)

Clearly, if λj = 0 then cj = c∗, since u (cj) = 1. Otherwise, cj < c∗. In short, it is
individually optimal to consume cj ≤ c∗, thus

cj = min(mj + p (aj − ab,j), c∗). (14)

If we define m∗ = c∗, then liquidating bonds might make sense only if mj < m∗. Hence,
we say buyer j is liquidity constrained if mj+p (aj −ab,j) < m∗. Liquidation and savings
are studied next.

4.3 The Marginal Value of Money and Bonds

To find the optimal portfolio of an agent, we must calculate the expected marginal

value of each asset, ∂Vj(ωj)
∂mj

and ∂Vj(ωj)
∂aj

. To do so use (5) and (9) in Vj(ωj) to obtain

Vj(ωj) = mj + aj +
αj
2 [u(cj)− cj − (aj − ab,j)(1− p )] +Wj(0) (15)

where cj satisfies (14).

Expression (15) tells us that the expected lifetime utility at the start of a period

depends on the agent’s real wealth mj + aj and two additional elements. First, the

expected utility from trade in market one. With probability αj/2 the agent spends cj of

his wealth on consumption and gets net utility u(cj) − cj . If the agent liquidates bonds
we have ab,j = 0 and we must account for the capital loss aj(1− p ). Second, there is the
continuation payoff Wj(0).
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Equation (15) is useful as it makes it obvious that cj = c∗ is individually optimal
because it maximizes the agent’s net utility in market one. Additionally, it makes it

simple to calculate the equilibrium marginal value of assets. Specifically,

∂Vj(ωj)
∂mj

= 1 +
αj
2 [u (cj)− 1] ∂cj∂mj

where ∂cj
∂mj

= 1 if the agent is liquidity constrained and zero otherwise (from (14)). It

follows that Vj(ωj) is strictly concave in real balances if buyer j is liquidity constrained

and linear otherwise:

∂Vj(ωj)
∂mj

=
1− αj

2 [1− u (cj)] if mj + p (aj − ab,j) < m∗
1 otherwise.

(16)

For a cash-constrained buyer, the marginal value of real balances is decreasing in mj ,

since u (cj) < 0.

Furthermore,

∂Vj(ωj)
∂aj

= 1 +
αj
2 [u (cj)− 1]

∂cj
∂aj
− αj

2 (1− p )(1−
∂ab,j
∂aj

)

so the bond’s marginal value depends on what the agent does with it. If it is used to finance

market one consumption, then ∂cj
∂aj

= p (1 − ∂ab,j
∂aj

)̇,
∂ab,j
∂aj

= 0 and ∂cj
∂aj

= p . Otherwise,

ab,j = aj so that
∂ab,j
∂aj

= 1 and ∂cj
∂aj

= 0. In short, Vj(ωj) is strictly concave in aj if a buyer

is liquidity constrained, and linear otherwise:

∂Vj(ωj)

∂aj
=

⎧⎪⎪⎨⎪⎪⎩
1− αj

2 [1− p u (cj)] if ab,j = 0 and mj + p aj < m
∗

1− αj
2 (1− p ) if ab,j = 0 and mj + p aj ≥ m∗

1 if ab,j = aj .

(17)

The expression indicates that the bond’s marginal value always reflects the price of

real balances (which is one). If bonds are liquidated to finance consumption (first line)

this value is adjusted by −αj
2 [1− p u (cj)]. This is the expected gain or loss from having

p additional cash ready to spend. This term is likely to be positive when cash constraints

are severe (i.e., cj is small), as there is a large marginal benefit from cashing bonds to buy

consumption. Of course, if the agent is not liquidity constrained (second line), the early

cashing of bonds generates a capital loss −(1− p ) and no benefit. This loss is absent if
bonds are not liquidated (third line).

Thus, the central observation is that illiquid bonds will be valued dissimilarly across

agent types, primarily due to their heterogeneity in consumption risk, governed by αj .
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In equilibrium, this induces heterogeneity in the returns expected by the different agent

types, as we demonstrate next.

4.4 Yields and Rates of Return

Start by considering gross nominal yields (for real, deflate by π). That on money is one

while that on bonds is 1+ i = 1
pA
, and they are both deterministic. Now consider nominal

rates of return. Abstract from marginal consumption utility, for the moment. Then,

the return on money is deterministic (it is the yield) and the return on illiquid bonds is

deterministic only if they are held until maturity. Due to capital losses, early redemption

promises an expected (nominal) rate of return which is type-dependent, 1
pA
[1− αj

2 (1−p )]
for agent j.

Of course, if assets finance market one consumption we must account for marginal con-

sumption utility. Using (3), (10) and (16)-(17), the agents’ portfolio choices in equilibrium

must satisfy the following Euler equations:

1 ≥ βj
π 1 +

αj
2 [u (cj)− 1] (= if mj > 0)

1 ≥ βj
πpA

1 +
αj
2 [p u (cj)− 1] (= if aj > 0 and ab,j = 0)

1 ≥ βj
πpA

(= if aj > 0 and ab,j = aj)

(18)

with discounted real expected returns on the right hand sides and unit price on the left.

The first line refers to the choice of real balances, the second and the third lines refer to

the choice of bonds under early liquidation or not. The first line tells us that, in choosing

how many real balances to hold, the agent evaluates three components. The first and

the second are standard: the discount factor βj and the real yield on cash
1
π . The third

component–which is non-standard–is 1π
αj
2 [u (cj)−1], non-negative since u (cj) ≥ 1 (from

(14)). It can be interpreted as the expected liquidity ‘premium’ from having cash available

in market one; it arises because money is needed to conduct trades in that market. This

premium is the larger the more severe is the cash constraint (the smaller is cj) and the

higher is the likelihood of a consumption shock (the higher is αj).

A similar interpretation applies to the choice of bonds, but there are two key differ-

ences. First, bonds promise a (possibly) higher real yield 1
πpA

. Second, a dollar worth of

bonds has a smaller liquidity premium p u (cj) − 1, relative to a dollar worth of cash, if
bonds are illiquid. It is this trade-off between bonds’ illiquidity and superior return that

will inform the agent’s portfolio decision and the efficiency of equilibrium.

We can now present the following

Definition. Given {π, τ , pA, p }, a stationary monetary equilibrium is a time-invariant list
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of consumption, production, real asset holdings, and relative prices {cj , c, q, qk,mj , aj , p}
that satisfy (1) through (18).

At this point, some observations are in order. To start, unlike other models of money

our agents are not forced to insure against consumption shocks solely with money. They

can also (or solely) insure with bonds, liquidating them in market one. In any event,

recalling that it is individually optimal to consume cj ≤ c∗, the expressions in (18) make
it evident that bonds are not sold early unless the agent is cash constrained. Hence,

mj + p aj ≤ m∗ in an equilibrium with constrained buyers.

Of course, the portfolio composition depends on the interest rate (e.g. bonds are not

superior to money if pA = 1) but also on the inflation rate and the bonds’ illiquidity. The

first two policy parameters, pA and π, affect returns identically for everyone. However,

the bond’s illiquidity is unlike other policy tools, as it affects agent types differently. It

distorts the expected returns dissimilarly across types, as 1− p acts as a proportional

tax on liquidation, whose incidence hinges on the frequency of consumption needs.

4.5 The Efficient Allocation

It is important to discuss what allocation would be selected by a planner who is

subject to the same physical constraints faced by the agents, and weights each agent

identically. Precisely, we must consider a planner that faces a sequence of static problems

of maximizing temporary utility subject to feasibility.

Recall that each agent trades with a new set of agents in every period, goods are

perishable, and at each date there is an equal number of identical buyers and sellers on

each market. It follows that the efficient allocation solves a sequence of static optimization

problems directed at maximizing surplus in each market. Then, we have u (cH) = u (cL) =

1 and U (qH) = U (qL) = 1 so that cj = cs,j = c∗ and qj = qs,j = q∗ is optimal at each
date for j = H,L (details in the Appendix).

Clearly, policy can affect economic outcomes; portfolio choices affect the real balances

available in market one that in turn affects the feasible trades. One naturally wonders

whether the efficient allocation can be sustained when bonds pay zero yields. The reason

being, a common theoretical result indicates that selection of i = 0 and an appropriate

deflation rate–an intervention known as the Friedman rule–is the optimal course of

action. This is the first question we look into.

5 The Failure of the Friedman Rule

We start by reporting a useful result.

Result 3. In a monetary equilibrium we must have π ≥ βH .
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Proof. By way of contradiction, suppose an equilibrium exists where π < βH . Consider

j = H in the first line of (18). Formj > 0 we would need π ≥ βH+βH
αH
2 [u (cH)−1] ≥ βH .

This is in contradiction with the conjecture π < βH . Thus π ≥ βH .

The result that an excessive rate of return on money is inconsistent with monetary

equilibrium is an obvious no-arbitrage result. It is in line with the finding of Becker

(1980) for an economy with a fixed stock of capital, whose equilibrium rate of return

cannot exceed the lowest rate of time preference. Intuitively, in a monetary economy

money’s value cannot grow too fast or agents would not spend it. The key observation

here is money’s value cannot grow at a rate 1
π that is superior to the return desired–so

to speak–by the most patient agent. Setting π < βH creates an arbitrage opportunity

for the most patient agents, as the return on money exceeds their shadow interest rate
1
βH
. This of course is inconsistent with equilibrium.

The implication is policy makers are constrained in their ability to give cash a return

that is sufficiently attractive for everyone. Thus, inefficiencies are to be expected when

saving can only take the form of cash. To formalize this intuition we remove the incentives

to save with bonds by setting i = 0, as Friedman suggested.5 Then we ask the question:

is there any π ≥ βH that sustains the efficient allocation?

Result 4. Consider i = 0 and π ≥ βH . A unique monetary equilibrium exists and money

holdings are heterogeneous, m∗ ≥ mH > mL > 0. The allocation is inefficient.
Proof. Let pA = 1 so i = 0. From (18) we get:

π ≥ βj 1 +
αj
2 [u (cj)− 1] (= if mj > 0)

π ≥ βj 1 +
αj
2 [u (cj)p − 1] (= if aj > 0 and ab,j = 0)

(19)

It is obvious that bonds and money are equivalent assets only if p = 1 (they are inferior

otherwise). Thus, suppose p = 1 and discuss money.

To prove the equilibrium is inefficient note π ≥ βH is necessary. From (18), mH > 0 if

π = βH 1 + αH
2 [u (cH)− 1] ≥ βH .

5One way to interpret this suggestion is to realize that–from a social efficiency standpoint– marginal

social benefits and costs of money should match. Since the private cost of holding an extra dollar is the

nominal interest rate, and money is costlessly produced, we should set i = 0. As real interest rates are

positive, Friedman suggested a deflation equal to the real interest rate, i.e. the unique discount factor in

a representative agent model. In our model we have more than one discount factor, but this is irrelevant,

since we have established π = βH is the best return money can ever give.
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If π > βH then cH < c∗ and mH < m∗. If π = βH then cH = c∗ and mH = m∗. Thus,
suppose π = βH . Now, mL > 0 requires

π = βL 1 + αL
2 [u (cL)− 1] = βH .

Since βL < βH , it follows that cL < c∗ and mL < m∗. Hence, if pA = 1 then a unique

stationary monetary equilibrium exists in which m∗ ≥ mH > mL > 0 and c∗ ≥ cH >

cL > 0. In equilibrium limπ→+βH
mH = m∗ so limπ→+βH

cH = c∗; also, ∂cL
∂π < 0. Thus,

the Friedman rule is a second best.

What is the intuition? When i = 0 effectively we have a model where agents insure

against consumption shocks with money. Due to discounting disparities equilibrium re-

turns must obey the no-arbitrage restriction π ≥ βH , so the more impatient will tend

to under-insure. This leaves them liquidity constrained in market one, which creates an

inefficiency. Of course, setting π = βH leads to a second best (since mH = m
∗).

This result seems quite robust. The Friedman rule should fail to achieve the first

best in any model in which money has an explicit transactions role and agents ‘price’

unequally future consumption. In fact, lowering the return on bonds to that of money (by

setting i = 0) seems to be the source of the problem. It eliminates the opportunity cost of

holding money (which is good) but it fails to provide adequate incentives for everyone to

save enough (which is bad), since π ≥ βH . Thus, we next consider a policy where i > 0.

Before doing so, however, several remarks are in order.

The Friedman rule does not fail to be a first best simply because bonds are illiquid.

Setting p = 1 under i = 0 simply makes money and bonds indistinguishable financial

instruments. Also, the result does not hinge on the mere existence of some arbitrary het-

erogeneity element that gives different agents incentives to hold unequal money balances.

In fact, the Friedman rule can be quite effective in eliminating equilibrium heterogeneity

in real-balances.

To see why, consider βH = βL = β, while retaining the assumption of disparities in

trade shocks, αH > αL. Set i = 0 so, from (19), a unique monetary equilibrium exists for

π > β. Specifically, we have

π = β 1 + αH
2 [u (cH)− 1] = β 1 + αL

2 [u (cL)− 1] .

For π > β balances and consumption are heterogeneous, c∗ > cH > cL and m∗ > mH >
mL. Types L under-insure as they do not need cash as frequently as types H (the opposite

occurs if αH < αL). As π →+ β real balances all converge to m∗ as agents become
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indifferent between having a dollar today or one tomorrow.6 In this case, trade-frequency

considerations do not enter saving decisions (see also Boel and Camera, 2004).

6 Using Bonds to Finance Consumption

We now want to demonstrate that the efficient allocation can be sustained when the

bonds’ yield is positive. To simplify our task, we start by proving that such an allocation

is inconsistent with agents holding mixed portfolios.

Result 5. Consider i > 0. If in equilibrium mj > 0 then cj < c∗.

Proof. Let i > 0. We want to show that an agent who holds bonds and money in

equilibrium must be liquidity constrained.

1. We start by proving that mj < m∗. Let aj ≥ 0. By way of contradiction, suppose
mj ≥ m∗. Here cj = c∗ and bonds are not liquidated. From (18), we need π = βj

for mj > 0, which implies π <
βj
pA
. This is inconsistent with equilibrium as agents

would buy infinite bonds. Thus, it must be that mj < m∗ so consider 0 ≤ mj < m∗.

2. If mj = 0, then for cj > 0 we need aj > 0 and ab,j = 0. From (18), we need

π =
βj
pA

1− αj
2 (1− p u (cj)) . Notice that if −

αj
2 (1 − p u (cj)) < 0 then π <

βj
pA
.

This, however, is not inconsistent with equilibrium since fractions of bonds cannot

be liquidated. Thus, the agent would not buy infinite amounts of bonds and avoid

liquidating them as (given mj = 0) his marginal utility of consumption would be

infinite. Maximization requires u (cj) ≥ 1 so the agent will not buy more bonds

than necessary to acquire c∗. Hence p aj ≤ c∗.

3. Consider 0 < mj < m∗ and suppose aj > 0. Then, using (18), the following

conditions must hold in equilibrium:

π =

⎧⎪⎪⎨⎪⎪⎩
βj 1 +

αj
2 [u (cj)− 1] for mj > 0

βj
pA

1 +
αj
2 [u (cj)p − 1] for aj > ab,j = 0

βj
pA

for aj = ab,j > 0

(20)

The first line in (20) is an equality since we are conjecturing mj > 0. One of the

other two lines must also hold with equality, since aj > 0. The second line holds

with equality, and the third with inequality, if the agents uses bonds to finance first

6For π = β a continuum of monetary equilibria exists. The reason is price indeterminacy, as any

sequence {pt} which is consistent with pt+1/pt = β is an equilibrium.
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market consumption. The reverse is true if bonds are held until maturity. Either

way, using the first and third line of (20) we need

1

pA
− 1 ≤ αj

2
[u (cj)− 1]. (21)

This no-arbitrage condition, says the net interest rate can never be so high to surpass

the expected marginal value of the ‘liquidity services’ provided by bonds, αj2 [u (cj)−
1]. This condition must always hold when the agent saves money. Now there are

two separate cases

(i) If (21) is an equality, then cj < c∗ since i > 0. This is independent of whether
the second line in (20) holds with a strict inequality or not. Thus, in this case

the agent has bonds and money, and he is constrained in market one.

(ii) If (21) is an inequality, then π = βj 1 +
αj
2 [u (cj)− 1] ≥

βj
pA
. Because we are

conjecturing aj > 0 then the second line in (20) must hold with equality:

π = βj 1 +
αj
2 [u (cj)− 1] =

βj
pA

1 +
αj
2 [u (cj)p − 1] (22)

Clearly we also need

βj
pA

1 +
αj
2 [u (cj)p − 1] ≥

βj
pA

⇒ p ≥ 1
u (cj)

. (23)

This implies cj < c∗. To see why notice that p ≤ 1 by definition, so we need
u (cj) ≥ 1, hence cj ≤ c∗. To see why cj = c∗ note that if cj = c∗ then we need
p = 1. But then (22) cannot hold since we would have π = βj <

βj
pA
.

We conclude that if mj , aj > 0 then cj < c∗. This is true whether ab,j = 0 or not.
Clearly, if ab,j = 0 then (23) must hold. The most stringent case corresponds to the

smallest u (cj), which is u (cj) = 1 + 2i
αj
, from (21). Thus (23) becomes p ≥ αj

αj+2i
.

Bonds cannot be too illiquid if they are used to finance market one consumption.

In short, when bonds pay a positive yield agents who hold money and bonds must be

liquidity constrained. Again, this is an arbitrage argument. In fact, suppose the agent is

unconstrained in his consumption in equilibrium. If the agent has money and bonds their

expected rates of returns must be identical. But then the agent could accumulate wealth

by holding bonds until maturity, which cannot be a stationary equilibrium.

This result suggests that perhaps the optimal policy should encourage agents to save

with bonds and not money. The government could make cash an unattractive asset–for
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saving purposes–by selecting a sufficiently high π. Then, perhaps agents would fully

insure against consumption shocks using bonds, liquidating them when needed. In the

words of Tobin

“Why not hold transactions balances in assets with higher yields than cash,

shifting into cash only at the time an outlay must be made?” (1956, p.241)

The problem with this is that the most patient agents might want to buy large amounts

of bonds. To see why, notice that if cj = c∗ then (18) implies

π ≥ βj (= if mj > 0)

π ≥ 1
pA
βj 1− αj

2 (1− p ) (= if aj > 0 and ab,j = 0)
(24)

so that 1
pA
βH 1− αH

2 (1− p ) > βH ≥ 1
pA
βL 1− αL

2 (1− p ) . Our next objective is to
prove that, in certain economies, such arbitrage opportunities can be avoided in a simple

way: by making bonds sufficiently illiquid.

6.1 The Optimal Illiquidity of Bonds

We start by defining the following condition:

βL
βH

>
2− αH
2− αL

. (25)

Since αH > αL then
2−αH
2−αL < 1. Thus (25) simply limits the extent of disparities in

individual discount factors. We then proceed by demonstrating that, under this condition,

the efficient allocation can be achieved if bonds are sufficiently illiquid.

Result 6. Let condition (25) be satisfied. If

π > βH

p = 1− 2(βH−βL)
αHβH−αLβL

pA =
βH
π 1− αH

2 (1− p )
(26)

then cj = c∗ is a stationary monetary equilibrium. Here pA, p ∈ (0, 1).
Proof. Conjecture cj = c∗. Applying our previous results we must insure that agents
save only with bonds and that bonds pay a positive yield. That is, we need mj = 0, which

requires π > βH (see the first expression in (24)). We also need i > 0 and aj > ab,j = 0

(since the agent holds no money). Thus, focus on the second expression in (24), which

must hold with equality for all j

π =
βj
pA

1− αj
2 (1− p ) . (27)
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Consider j = H. Then we need

pA =
1

π
βH 1− αH

2
(1− p ) ≡ 1

π
h(p ) (28)

which defines uniquely pA as a function of π. Since π > βH then pA < 1 − αH
2 (1 − p ).

Thus nominal interest rates are bounded strictly away from zero.

Now consider j = L. Equation (27) for j = L and pA =
h(p )
π implies

βH 1− αH
2 (1− p ) = βL 1− αL

2 (1− p ) ⇒ βL
βH
= 2−αH(1−p )

2−αL(1−p ) .

Hence, there exists a unique

p = 1− 2(βH − βL)

αHβH − αLβL
(29)

such that (27) holds for all j. We have p > 0 only if (25) holds, a condition we retain.

Since βH > βL and αH > αL then p < 1. However, p = 1 if βH = βL. Note also that

p > pA if π is large.

In equilibrium aj = a for j = L,H. Since pAa = m̄ and a = a, then we have

a = a = m̄
pA
. Taxes are

τ = m̄− m̄

pA
1− (1− p ) ρ

αH
2
+ (1− ρ)

αL
2

i.e. cash at the end of the period, m̄, minus the payments to bond holders, m̄pA , adjusted

for the liquidation cost, m̄1−p
pA

ραH
2 + (1− ρ)αL2 . Finally, it can be proved that qk ≥ 0

if U (x) is sufficiently larger than u (x) for x ∈ R+ (see the Appendix).
In short, when the most patient agents are also those who are more prone to con-

sumption shocks, then two elements are needed to sustain the efficient allocation: savings

with bonds must be encouraged, by setting i > 0 and setting π > βH , and bonds must

be illiquid, p < 1. What is the intuition? First, we know that deflation cannot be too

pronounced in a monetary equilibrium, therefore the impatient agents would under-insure

by using cash. Consequently, we must give bonds a return superior to cash.

However, the patient agents would demand infinite quantities of bonds if p = 1. Thus,

we need to lower the return on bonds for these agents. Since types H need cash more

frequently than agents L, this can be done by setting p < 1. When (25) holds, a unique

p ∈ (0, 1) exists that equates the present values of returns across agents:

βH 1− αH
2
(1− p ) = βL 1− αL

2
(1− p ) .
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The equilibrium p falls as discounting disparities increase, which is why heterogeneity in

discounting cannot be too extreme, i.e. (25).

By substituting (29) into (28), we obtain the nominal interest rate that sustains the

efficient equilibrium:

1 + i = π
βH

θ where θ =
αH

βH
βL
−αL

αH−αL ≥ 1.
Nominal interest rates are a function of a weighted measure of the agents’ discount factors,

θ, with weights given by the frequencies of consumption shocks.

We see that the model is consistent with the notion of existence of a ‘Fisher effect,’

as i fully accounts for inflationary pressure, rising or falling, but leaving the allocation

unaffected. In particular, bonds dominate cash in rate of return, which is why no one

saves with cash. Bond yields also include a liquidity premium, captured by θ, since an

increase in the bonds’ illiquidity lessens their attractiveness. In environments where the

efficient equilibrium is associated to a lower p (hence a higher θ), we see that the bonds’

yield must be higher. As discounting disparities vanish, so does the need for illiquidity

and

lim
βH ,βL→β

1 + i =
π

β

i.e. the optimal real yield converges to the (common) rate of time preference, 1β .

7 Is the Optimal Policy Necessarily Deflationary?

We have seen that the availability of nominal bonds allows to sustain the efficient

outcome even when monetary policy is inflationary. In short, the Friedman rule is not

uniquely optimal and sometimes it is simply suboptimal. To build intuition consider the

case βH = βL = β and suppose with have both money and bonds.

There are two ways to sustain cj = c∗ for all j in this economy. Both hinge on the
availability of some asset that can be easily transformed into consumption, and that offers

a real yield 1
β . A first possibility is to induce agents to save with cash, insuring that cash

pays the return 1
β . This is done by lowering the yield on bonds to that of money. Since

the real yield on cash is 1π , and on bonds is
1+i
π , we must set i = 0. Since cash cannot pay

interest and cannot be bought at a discount, then a deflation must be run at rate π = β.

Here, we are at the Friedman rule and money and bonds are perfect substitutes if p = 1.

Alternatively, the government can give incentives to save with interest-paying bonds

that can be easily redeemed for cash. This is equivalent to setting π > β while selling

bonds at price pA =
β
π , standing ready to costlessly redeem them, i.e. setting p = 1.

Here, agents save with bonds–not money–and obtain the real return 1
β , independent of
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π. In short, deflations in this environment are unnecessary for efficiency, as long as assets

exist that can be easily liquidated when a consumption opportunity arises.

In the absence of a ‘cash management’ technology that allows for cheap liquidation of

bonds, then one can set

pA =
β

π
[1− 1− p

2
max(αH ,αL)]

and then engage in rationing bonds’ purchases. This is reminiscent of the market for U.S.

government EE series savings bonds, which are registered illiquid bonds that cannot be

purchased in quantities that exceed a fixed nominal amount (currently $60,000). We note

that this same rationing strategy would sustain an efficient allocation when βH > βL but

αH ≤ αL.

8 Final Remarks

The analysis in this paper offers us two basic lessons. A first lesson is that heterogeneity

in discounting blunts the appeal of the Friedman rule, due to equilibrium heterogeneity

in desired real balances.

Under zero interest rates, agents essentially must rely on the available stock of fiat

money as a means to insure against consumption risk. A simple arbitrage argument

indicates that a deflationary policy cannot achieve the first best. The reason is cash

cannot promise a return greater than the discount factor of the most patient agents, much

as it happens for the return on capital in Becker (1980). Therefore, the more impatient

will under-insure, which is detrimental to efficiency.

Under-insurance means that in equilibrium agents hold different amounts of the avail-

able stock of nominal assets although, unlike Becker (1980), everyone holds some. These

findings should obtain in any environment where money is essential to execute trades,

since it is simply an arbitrage argument.

A second lesson is that bonds should provide a positive yield in order to sustain

an efficient equilibrium. Furthermore, under certain conditions, an additional friction is

needed: bonds should be illiquid, i.e. should be convertible into immediate consumption

less efficiently than cash.

In the model, this necessity stems from difference in desired rates of return and in

consumption needs. Illiquidity is a friction that removes arbitrage opportunities if the

individuals who have the lowest discount rate are also those who are more severely exposed

to consumption risk. Although this result is less general, it suggests one (more) reason as

to why illiquid government bonds might be desirable financial instruments.
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Appendix

Proof of qk ≥ 0
We now want to provide conditions that guarantee qk ≥ 0 in the efficient equilibrium

described by Result 6. From Result 2 we have p1 = p2 = p, and we know q = q∗. These
results and the budget constraint (6) imply

qk = q
∗ + π(mj + pAaj)− (mk,j + ak,j + τ)

In the efficient equilibrium agents save only with bonds, mj = 0, and aj = a = a for all

j. Since pAa = m̄ we have a = a = m̄
pA
. Thus

qk = q
∗ + m̄π − (mk,j + ak,j + τ)

From now on we are going to focus on the seller’s case, since qb > qs. We have ms,j =

c∗ = m̄p
pA

and as,j = a = m̄
pA
. Therefore,

qs = q∗ + m̄π − c∗ − m̄
pA
− τ

= q∗ + c∗pAπ
p − c∗ − c∗

p − c∗ pAm̄p τ

= q∗ − c∗ + c∗pAπ
p − c∗pA

p − c∗ 1−pp ραH2 + (1− ρ)αL2

since

τ = m̄− m̄
pA
+ m̄1−p

pA
ραH2 + (1− ρ)αL2 .

Therefore

qs = q∗ − c∗ 1 + (1− π)pAp + 1−p
p ραH

2 + (1− ρ)αL2 (30)

Since the term multiplying c∗ is greater than one, then in order to have qs > 0, q∗ must
be sufficiently larger than c∗. Since in the efficient equilibrium U (q∗) = u (c∗) = 1, then
(30) implies we need U (x) > u (x), i.e. the marginal utility of consumption in market

two must be sufficiently higher than the marginal utility of consumption in market one

for any amount of consumption x ∈ R+.

The Planner’s Problem

At each date the planner has buyers and sellers of identical mass 12 [ραH+(1−ρ)αL], in
market one, and of mass one in market two. All buyers have identical preferences and all

sellers have identical unit marginal production cost. Assuming the planner weights agents

identically it is obvious that the sellers’ marginal utilities must be identically equal to

one. Production can be assigned to sellers differently–due to fixed marginal production
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costs–and equal production is a possibility. To see it, notice that in each period the

planner solves

max
cj ,csj ,qj ,q

s
j

1

2
{ραH [u(cH)− cs,H ] + (1− ρ)αL[u(cL)− cs,L]}+ρ[U(qH)−qs,H ]+(1−ρ)[U(qL)−qs,L]

subject to

ραHcH + (1− ρ)αLcL = ραHcs,H + (1− ρ)αLcs,L

ρqH + (1− ρ)qL = ρqs,H + (1− ρ)qs,L.

Here cj = cs,j = c∗ and qj = qs,j = q∗ maximizes trade surplus in market one, u(cj)− cs,j ,
and in market two, U(qj)− qs,j .
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