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1 Introduction

This paper provides some variance decompositions on microeconomic international

relative price data that are meant to inform the burgeoning literature bringing

together international macroeconomics and trade. International macro typically

focuses on the intertemporal dimension of prices. Trade places more weight on the

spatial dimension. The intersection between the two (e.g., Burstein and Atkeson

(2008), Ghironi and Melitz (2005)) emphasizes both time and space. Our variance

decompositions are explicitly designed with this in mind. We parse the total

variation in Law-of-One-Price (LOP) deviations into cross-sectional and time series

components. The former is the variance in LOP deviations across locations and

goods, after averaging away the time series variation. We associate it with the

trade literature, which emphasizes imperfect competition and barriers to trade.

The latter is the variation around these cross-sectional, long-run averages. We

associate it with DGSE models, which emphasize productivity and policy shocks

and how they interact with nominal rigidities. Our goal is to better understand

each of these dimensions of the data and, in particular, any interactions between

them.

Our results boil down to three sets of variance decompositions. What they

show is as follows. First, cross-sectional variance in long-term absolute deviations

from the Law of One Price (LOP) is large relative to time-series variance. Second,

time-series variance in changes in LOP deviations is dominated by good-specific

variation, not country-specific variation such as arises from nominal exchange rates.

Third, cross-sectional and time-series variation are connected when we look across

goods. This connection has several facets. The simplest is unconditional: goods

that exhibit high cross-sectional variance in long-term, mean LOP deviations also
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exhibit high time-series variation around these long-term means. A richer pat-

tern arises when we condition on the tradeability of goods. Non-traded goods

exhibit relatively high cross-sectional variation, but relatively low time-series vari-

ation. We show that this implies the existence of a second source of cross-sectional

(across goods) variation, above and beyond tradeability. This second ‘factor’ gen-

erates a positive association between cross-sectional and time-series variation, and

it is large in the sense that it clouds the negative relationship associated with

tradeability. We argue that these variance decompositions provide valuable infor-

mation for the construction of models aimed at synthesizing the microeconomic

and macroeconomic behavior of international relative prices.

We now elaborate on each set of results in turn. To better understand the

first set, consider a specific good: an apple. We first compute the absolute LOP

deviation for apples between 123 major cities in the world, for each year between

1990 and 2005. We then compute the time-averaged, long-term LOP deviation —

the ‘fixed effect’ — for each pair of cities. We find that cross-sectional variation

in these fixed effects is large relative to time-series variation around them. That

is, apples simply tend to be expensive in some cities and cheap in others, this

city-specific tendency is stable over time, and the time-variation that does exist is

relatively small. Our data include the prices of many other goods and services, not

just apples. This relative price behavior is broadly representative of most goods

and services in the typical urban consumption basket.

What does this tell us about economic models? Consider sticky-price models,

for example. They emphasize frictions in the mechanism through which prices

change. They often ignore frictions which cause long-term LOP deviations. Our

results suggest that what they are ignoring is large. The overall distribution of LOP

deviations is dominated by something that sticky-price models ignore, basically by-
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construction. Is this likely to matter? We think so. It seems likely that whatever

are the frictions underlying long-term LOP deviations, these frictions also play

a role in governing how the deviations change over time. Much of our paper is

dedicated to substantiating this. For now, we simply emphasize an interpretative

point. Suppose that one is ultimately interested in the transmission of shocks.

We don’t deny that at a sufficiently short horizon, goods prices — in particular

international goods prices — are sticky, and that understanding the frictions that

drive this is important. But nevertheless, a friction that generates a 5 or 10%

change in a relative price seems less striking in a world where long-term LOP

deviations average 50% than in a world where they average zero.

Our second set of results address real and nominal exchange rate variability

more directly. To motivate them, consider the Canada-U.S. real exchange rate,

depicted in Figure 1. This graph is representative of the common wisdom — often

attributed to Mussa (1986) — that real and nominal exchange rates are basically

the same thing. This evidence has motivated much economic discussion and model

building. It is at the root of the notion that nominal exchange rate variability

creates allocative distortions in international consumption and investment decision

making. It plays a central role in Rogoff’s (1996) ‘PPP Puzzle:’ the statement that

PPP deviations are too large and persistent to be reconciled by some combination

of nominal rigidities and real shocks. Finally, it is often used to motivate sticky-

price models. A caricature of Figure 1’s interpretation in this context is that the

world is described by fixed prices in domestic and foreign currency units and that

nominal exchange rate variability simply ‘shifts around’ the entire distribution of

individual goods prices.
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Figure 1

Canada-U.S. Real and Nominal Exchange Rates

(Annual Data: Indexed 1971=1)

We ask if these types of interpretations are consistent with the behavior of

changes in microeconomic LOP deviations. Following the above example, we

first compute the city-specific relative price of apples, 1990-2005. We do so on

a bilateral-pair basis (e.g., the relative price of apples between Pittsburgh and

Toronto, 1990-2005). We then compute changes in these relative prices, 1991-

2005, and do the same thing for bananas, toaster ovens, haircuts and many other

goods and services. Finally, for each bilateral city-pair we decompose the variance

of the changes into two orthogonal components: a city-pair-specific component

and a good-specific component.

What we find is that the magnitude of the city-specific component is small rel-

ative to the good-specific component. This is true for city-pairs which are within

a country. It is only slightly less true for for city-pairs that are not. For example,
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among intra-U.S. city-pairs the average amount of total variation attributable to

the city-specific component is 1.8%. The analogous number for U.S.-Canadian

city-pairs is 6.9%. One’s natural inclination is to attribute the difference to nom-

inal exchange rates. This inclination is correct; the correlation between the U.S.-

Canadian city-specific component and changes in the nominal exchange rate is

0.93. The main point, however, is that roughly 93% of the variation in changes in

U.S.-Canada LOP deviations has nothing to do with nominal exchange rates. It

is specific to the goods themselves.

What does this tell us about economic models? That they place heavy weight

on country-specific price shocks (like the nominal exchange rate) at their peril.

What about the empirical evidence on aggregate real exchange rates discussed

above? Our results do not contradict them. When we aggregate across the mi-

croeconomic prices our real exchange rate picture is very similar to Figure 1. What

our results do contradict, however, are some of the popular interpretations of Fig-

ure 1. If you think that real exchange rate variability is driven by nominal exchange

rates moving around a distribution of microeconomic sticky prices, you are wrong.

There is a great deal of movement within the distribution. Microeconomic prices

in local currency units move around a lot more than the nominal exchange rate

does.

At this point, one might argue that our results are not surprising. Qualitatively,

we agree. It is not surprising that long-term deviations from LOP exist between

two cities. Retail goods are bundles of traded and non-traded goods and this is

exactly what we should expect. Neither is it surprising that changes in good-

level relative prices are more variable than changes in aggregate prices. This

is an obvious implication of averaging. The importance of our point, then, is

quantitative, not qualitative. It is important to know that 2/3 of the total variation

6



in LOP deviations is cross-sectional. It is important to know that changes in

nominal exchange rates account for less than 10% of the variation in good-specific

LOP deviations. This being said, the final section of our paper goes further,

drawing some informative connections — both qualitative and quantitative —

between the long-term and the short-term, and between the tradeability of goods

and whatever else it is that drives price dispersion.

Our third set of variance decompositions articulates these connections. We

begin by showing that there exists an unmistakable positive relationship between

cross-sectional and time-series variance. That is, if apples are associated with rel-

atively large long-term, mean LOP deviations, then the variation around these

means also tends to be relatively large. This is an unconditional statement (in

the goods dimension). One’s first reaction to it, motivated by years of theory and

evidence, is to ask whether the tradedness of goods can shed any light. We do

so, conditioning on tradeability in the cross-section. What we find, at first blush,

might seem to contradict the unconditional evidence. Consistent with the standard

Balassa-Samuelson (Balassa (1964), Samuelson (1964)) idea, non-traded goods ex-

hibit more variance than traded goods, but this is only the case for cross-sectional

variance. In the time-series dimension, traded goods exhibit larger deviations from

LOP. Where is the contradiction? If non-traded goods have high cross-sectional

variation, and cross-sectional variation is positively associated with time-series

variation, then shouldn’t non-traded goods also have relatively high time-series

variation?

The answer is no. There is no contradiction. Instead, there is a second source

of variation across goods, above-and-beyond tradeability. Moreover, this source of

variation is not just noise. It must display a systematic pattern. It must (i) move

both cross-sectional and time-series dispersion in the same direction, and (ii) be
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large enough to cloud the negative relationship induced by tradeability. We neither

model nor measure (directly) this source of variation. Our objective is simply to

provide some broad variance decompositions that can inform structural models as

well as further empirical work.

It is worth noting that our results, as they relate to tradeability, evoke those

of Engel (1999). Broadly speaking, he showed that, in contrast with the basic

Balassa-Samuelson idea, variability in traded goods prices seems to play an im-

portant, perhaps dominant role in accounting for real exchange behavior. His

conclusions were based on index-number data, thus emphasizing time-series vari-

ation. Our findings are complementary. We show, while the Balassa-Samuelson,

traded/non-traded dichotomy gets it right in the long-run, in the short-run we see

the opposite, with time-series variation being larger for traded goods. What is go-

ing on? We provide additional empirical evidence suggesting that the shocks that

affect traded goods prices are larger than those affecting non-traded goods prices.

Anecdotally, this just says that the shocks that affect the cost of petroleum prod-

ucts and electronic components are large relative to those affecting haircuts (but,

nevertheless, the cross-sectional dispersion in haircut prices is relatively large).

Another anecdote is that the Headline CPI Index — which includes the highly

tradeable food and energy components — is more variable that the Core CPI In-

dex. In Section 5 go beyond anecdotes and show that our microeconomic data

displays such behavior.

The remainder of our paper is organized as follows. Section 2 describes our data

and the basic definitions and transformations that we employ. Section 3 presents

results based on absolute LOP deviations and Section 4 turns to changes in LOP

deviations. Section 5 provides some interpretation of our basic results and then

delves further into the linkages between sources of cross-sectional and time-series
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variation that we discuss above. Section 6 concludes.

2 Data

We use panel data on individual goods prices that vary across both geographic

locations and time. This allows us to study both absolute and differenced LOP

deviations. The body of work that exploits such data is by now large and growing.

Examples include Alessandria and Kaboski (2011), Bergin and Glick (2007), Broda

and Weinstein (2008), Campbell and Lapham (2004), Fischer (2012), Fitzgerald

and Haller (2008), Gagnon (2010), Gopinath and Rigobon (2008), Gopinath, Gour-

inchas, Hsieh, and Li (2011), Gorodnichenko and Tesar (2009), Hellerstein (2008),

Hummels (2007), Imbs, Mumtaz, Ravn, and Rey (2005) and Simonovska (2010),

as well as a previous paper of our own, Crucini, Telmer, and Zachariadis (2005).

The specific data that we use is as follows. We obtain local-currency retail

prices from the Worldwide Cost of Living Survey coordinated and compiled by

the Economist Intelligence Unit (EIU). The target market for this data source are

corporations seeking to determine compensation levels for employees residing in

different cities around the world. While the goods and services reflect this objective

to some extent, the sample is broadly representative of what would appear in the

consumption basket of an urban consumer.1 What makes the data attractive for

research purposes is the fact that the prices are in absolute currency units and the

survey is conducted by a single agency in a consistent manner over time. It also

has a limited intra-national dimension, thus providing a useful contrast between

domestic and international price dispersion.

1Rogers (2002) conducts an extensive comparison between the EIU data and data from national
statistical agencies. He finds that the EIU data are broadly representative of what the consumer
price index data tell us.
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More specifically, the EIU dataset consists of local-currency retail prices, in-

clusive of sales tax, on as many as 301 goods and services, sampled in 123 cities

from 78 different countries. The data are annual, 1990-2005. The country with the

most intranational observations is the U.S., with 16, followed by Australia, China

and Germany with 5, Canada with 4, Saudi Arabia with 3, and Brazil, France,

Italy, Russia, Spain, Switzerland, UK, India, Japan, Vietnam, New Zealand with

2. A number of recent papers have used this data, including Crucini and Shintani

(2008), Engel and Rogers (2004), Parsley and Wei (2000) and Rogers (2002).2.

We denote Pijt as the local-currency price of good i in city j in year t and

Sjk,t as the date t nominal exchange rate between cities j and k, in units of city

k (Sjk,t = 1 if cities j and k share the same currency). We transform prices into

bilateral log deviations from the law-of-one-price (LOP):3

qi,jk,t = log(
PijtSjk,t
Pikt

) , (1)

In words, these LOP deviations are the date t (log) prices of good i in city j in

units of good i in city k. Appendix A provides additional details, including how

we clean the data and deal with missing observations.

Figure 2 shows estimates of the density function for qi,jk,t for 1990, 1995, 2000

and 2005, for both international city-pairs and U.S. city-pairs (the graph is quite

similar for intranational pairs more broadly). The graph shows that dispersion in

good-by-good LOP deviations is large, and substantially larger once we include a

2See http://bertha.tepper.cmu.edu/telmerc/eurostat for a list of all goods-and-services
and all cities

3A previous version of the paper employed an alternative LOP measure, the log deviation from
the cross-city geometric average: log(Sjn,tPijt)/

∑M
j=1 log(Sjn,tPijt) where M denotes the total

number of cities and n denotes the numeraire currency in units of which all prices are expressed
(our measures of price dispersion are independent of the choice of the numeraire currency). While
this definition results in lower overall LOP variability (by construction), the main message of our
paper remains unchanged.
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wide array of international location-pairs.

3 Variance in Absolute LOP Deviations

We begin by decomposing the variation in qi,jk,t, good-by-good, into a cross-

sectional and a time-series component:

Var jk,t(qi,jk,t | i) = Var jk

(
Et(qi,jk,t | i, jk)

)
+ Ejk

(
Var t(qi,jk,t | i, jk)

)
(2)

= Ti + Fi . (3)

Our notational conventions are slightly non-standard. The conditional mean and

variance operators, Ex (· | y) and Varx (· | y), denote the mean and variance calcu-

lated by integrating across the variable(s) x while conditioning on the variable(s)

y. So, for instance, Et[qi,jk,t | i, jk] is the mean of the time series of relative prices

for good i between cities j and k and Var jk(Et[qi,jk,t | i, jk]) is the cross-sectional

variance, across location-pairs, in these time-series means.

To more easily interpret Equation (2), consider its individual pieces. First,

Et[qi,jk,t | i, jk] is the mean (over time) of the relative cost of good i between cities

j and k. If, for example, j = New York and k = Toronto, and if this mean is

positive, then good i tends to be more expensive in New York than in Toronto in

a long-run sense. The first term in the decomposition, Ti, is the cross-sectional

variance — across location-pairs — of these long-run means. It asks “how much

of the total variation for good i is due to long-run, city-specific ‘fixed effects?’

The second term, Fi, captures time-series variation around the long-term means.

It is the average (across location-pairs) time-series variance in the absolute LOP

deviation for good i. It asks “how much of the total variation for good i is due to
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shocks that die out over time?”

Figure 3 provides an (intentionally stark) illustration. It plots the time series

of LOP deviations between North American city-pairs for a typical non-traded

good and a typical traded good: haircuts and apples, respectively. The haircut

graph is dominated by long-run means. Cross-sectional variance in these means

is measured by Ti from Equation (3). Time series variance around the long-run

means is relatively small and is measured by Fi. Numerically, Ti and Fi are,

respectively (for haircuts) 86% and 14% of the total variance. Apples tell quite

a different story. Time-series variance plays a much larger role. The analogous

numbers are 48% and 52%.

Why is this decomposition an interesting one? Because economic models often

make stark assumptions about its components. The archetypical trade model

assumes that the differences between home and foreign prices reflect tariff and

trade barriers, which vary across goods and locations, Ti > 0, but not time, Fi = 0.

The archetypical business cycle model assumes that unexpected shocks generate

transitory fluctuations in international relative prices, Fi > 0, away from a steady-

state in which the LOP holds, Ti = 0. Our notation is chosen with this in mind.

The letter T represents ‘trade costs and trade theory’ and the letter F represents

‘frictions, finance, and fluctuations.’

Table 1 moves from the anecdotal examples of Figure 3 to a more systematic

examination. It reports the average estimate (averaged across goods i) of Ti and Fi

from Equation (3). City pairs separated by an international border are separated

from those that are not. Consider first the total variance, Var jk,t(qi,jk,t | i). Among

U.S. cities the estimate is 0.128. Interestingly, the estimate is essentially unchanged

for Canada-U.S. city pairs. Once we include all international OECD city-pairs, in

contrast, the total variance increases to 0.221. Including all international city pairs
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(i.e., including non-OECD cities) further increases the variance to 0.275.

What’s driving this? One’s natural inclination might be to attribute it to vari-

ation in nominal exchange rates. The incremental increase in variance going from

the U.S. to the OECD to the world is 0.093 and 0.147, respectively. These values

are in the same ballpark as that of the variance of changes in nominal exchange

rates, averaged across countries, for OECD pairs and world pairs, respectively.4

So, are nominal exchange rates at the root of increasing LOP variability? The re-

mainder of the table says no. The majority of the total variance in LOP deviations

— roughly 60% on average — is associated with long-run, good-and-city-specific

“fixed effects.” Almost by their very nature, these things are unrelated to nominal

exchange rate variability combined with sticky prices, the story that motivates this

entire line of reasoning.

To summarize, between 60 and 70 percent the total variation in absolute LOP

deviations attributable to long-run LOP deviations. The lion’s share of what de-

termines the international micro price distribution falls under the realm of trade

theory. Relatively little seems (directly) related to ‘frictions, finance, and fluctua-

tions’ as is discussed above.

3.1 Good versus City Specific Variation

The previous results average across goods. They tell us how important long-run

means are for the LOP deviations of the average good. A related question decom-

poses variation in these long-run means into that which is city-pair specific and

4Implicit in this comparison is an assumption about the persistence of real exchange rates. In
related work we find that the variance of the absolute level of the micro LOP deviations is roughly
the same as the variance of the change in the absolute level. If micro real exchange rates follow an
AR(1), this means that the autocorrelation is 0.5. In addition it means that it is coherent to add
estimates of the variance of the change in nominal exchange rates to estimates of the variance of
the level of the real exchange rate, as we’re doing here.
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that which is not. That is, denoting the long-runs means as µi,jk ≡ Et(qi,jk,t | i, jk)

(i.e., the term in the first large parentheses of Equation (2)), we write

µi,jk = µjk + εi,jk

=⇒ Var i,jk(µi,jk) = Var jk(µjk) + Var i,jk(εi,jk) . (4)

This decomposition examines the relevance of statements like ‘goods are always

expensive in New York.’ The previous section showed us that the ‘goods are always

expensive’ part describes the majority of the overall variation in LOP deviations.

Here, we examine the ‘in New York’ part. We ask how much of the variation in

the long-run means is related to city-wide factors like rent and wages. What’s left

over is good-specific; ‘wine is always cheap in Barcelona, but lots of other goods

are not.’5

In Table 2 we see that city effects, µjk, account for 15 to 20 percent of the total

variation in the long-term means. The particular set of city-pairs — ranging from

all pairs of U.S. cities to all global pairs — is important for the total variation in

µi.jk, but much less so for the fraction attributable to city effects. The relatively

small magnitude of this number seems important to us. It is suggestive of the

importance of either good-specific factors — e.g., pricing-to-market being more

prevalent for some goods than others — or of good-specific sensitivity to common,

city-specific factors. An example of the latter is non-traded input costs (e.g.,

wages, rent, distribution services) varying across cities, with different goods using

different shares of non-traded versus traded inputs. Section 5 elaborates on these

themes.

Table 3 conducts a similar decomposition as Equation (4), but with the time-

5We do not include a good-specific term, µi, in the decomposition (4) because, by construction,
the long-term average LOP deviations, µi,jk, average to zero across jk: Ejkµi,kj = 0
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series variances from Equation (2) instead of the time-series means. Denoting σ2i,jk

≡ Var t(qi,jk,t | i, kj) (i.e., the term in the second large parentheses of Equation (2)),

we decompose the good-city-pair specific time-series variances into three pieces:

σ2i,jk = σ2i + σ2jk + εi,jk . (5)

The interpretative questions are similar to those above. The city-pair effect, σ2jk

asks ‘are there city pairs for which the (absolute) LOP deviations exhibit relatively

much (relatively little) time-series volatility?’ If, for example, nominal exchange

rate variability is important, this should show up as such a city-pair effect.6 Sim-

ilarly, high transport costs for cities on the geographic periphery may translate

into wider no-arbitrage regions, more LOP variability, and a larger value for σ2jk.

The second term, σ2i , captures good-specific variation. It answers questions like

‘are LOP deviations for some goods more volatile than for others?’ A common

interpretation of this involves traded versus non-traded goods.

What we see in Table 3 is fairly striking. Good-specific effects are substantially

more important than city-specific effects. The unconditional time-series variance

of (absolute) LOP deviations seems more affected by things like a good’s tradeabil-

ity than things like nominal exchange rate variability and city-wide productivity

shocks. Specifically, for the OECD set of city pairs, the good-specific variation

is 17% of the total variation whereas city-specific variation accounts for only 9%.

For U.S. cities and Canada/U.S. cities the difference is even larger at 25 or 30%

6This exchange-rate interpretation depends critically on the extent to which our data has a
good balance of intra versus international city pairs. This varies a lot across the different city-pair
sets in Table 3. For ‘Canada-U.S.’ about 1/3 of all city pairs are separated by a border. This
reflects a large number of U.S. cities (16), versus just 4 Canadian cities. For ‘OECD’ and ‘World,’
in contrast, borders separate about 90% and 97% of city pairs, respectively. This reflects a large
number of countries — 16 out of 78 — for which we only have data on one city per country (see
Section 2 for additional details). The effect of nominal exchange rates in Table 3, then, is quite
blurred. We rectify this in Section 4 where, instead of decomposing the variance of the shocks as
in Equation (5), we decompose the shocks themselves.
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versus 2 or 3%. For all ‘World’ city pairs, in contrast, things go the other way at

12 versus 15%. In Section 4 we show that the main reason for the latter is nominal

exchange rate variability.

4 Variance in Changes in LOP Deviations

We now examine the behavior of changes in good-by-good LOP deviations.

∆qi,jk,t ≡ qi,jk,t − qi,jk,t−1 .

One advantage of working with first-differences is that our findings do not depend

on the precision with which we estimate the long-term LOP means, µi,kj , that

permeate much of the analysis in Section 3 (i.e., the first LHS term in Equation

(2)). In addition, much of the existing body of empirical (e.g., Figure 1) work

is based on first-differences, something necessitated by using index-number data.

What we will see here is that our results are broadly consistent with the existing

evidence, while at the same time offering new insights that derive from having

absolute prices and a large cross-section.

We begin with a decomposition that is analogous to the time-series versus

cross-sectional decomposition from Equations (2) and (3). Conditioning on each

city-pair, jk, this is

Var i,t(∆qi,jk,t | jk) = Var t

(
Ei(∆qi,jk,t | jk, t)

)
+ Et

(
Var i(∆qi,jk,t | jk, t)

)
= Cjk + Ijk . (6)

This decomposition asks a simple question. Consider a city-pair, jk. At each point

in time there is distribution of good-by-good LOP deviations. Equation (6) asks
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“how much of the change (over time) in the LOP deviations represents changes

in the mean of the distribution versus movement within the distribution, around

the (time-varying) mean?” More specifically, Equation (6) decomposes the total

variance (of the changes) into two pieces: common across all goods (C) and idiosyn-

cratic to each good (I). The common piece, Cjk, is basically real exchange rate

variation. That is, Ei(∆qi,jk,t | jk, t) is the date-t cross-good-average for city-pair

jk, a close cousin to the change in the CPI-based real exchange rate.7 Time-series

variation in this average, Cjk, measures the contribution of movement in the mean

of the distribution of LOP deviations. The idiosyncratic piece Ijk, in contrast,

measures the contribution of movement around the mean of the distribution. It

takes the cross-sectional distribution for jk at date t, asks how different the change

in good i’s LOP deviation is from good l’s, and then time-averages the resulting

sequence of cross-sectional variances.

A stark example clarifies what Equation (6) is trying to measure. Consider two

cities that use different currencies. Suppose that all local-currency goods prices

are fixed, so that all of the variation in ∆qi,jk,t is due to changes in the nominal

exchange rate. Then the change in each good’s LOP deviation would be the same

at each date t, the cross-sectional variance, Var i(∆qi,jk,t | jk, t) would be zero, and

so would its time-series average, Ijk. We would say that all of the LOP variation

is ‘common,’ as reflected by Cjk. In the less stark case, local currency prices also

move. If this movement is idiosyncratic — if it represents cross-sectional variation

around variation in the real exchange rate — then Ijk will pick this up.

Table 4 reports estimates of the moments in Equation (6). The answer to

the questions posed above are quite clear. Very little of the variation is common

7Crucini, Telmer, and Zachariadis (2005) show that, for European data, equally-weighted,
cross-good averages of LOP deviations behave similarly with respect to CPI-weighted averages.
Also, Figure 6 below shows that for each date t, Ei(∆qi,jk,t | jk, t) is highly correlated with a
NIPA-based measure of the real exchange rate.
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across goods. Almost all of the variation is idiosyncratic, representing movement

within the distribution, not movement of the distribution itself. This is particularly

true for city-pairs not separated by an international border, where the common

variation represents only 1 or 2% of the total. For city pairs that are separated

by a border, common variation is larger, but the magnitude remains small. The

ratio of the common to total variation is 7.3%, 20.0%, and 22.4% for Canada-U.S.,

OECD and “World” city pairs, respectively.

Figures 4 and 5 add some color, structure and detail to Table 4. Whereas

Table 4 reports cross-city averages, the figures report the actual values of the ratio

Cjk/(Cjk + Ijk) for each jk. Figure 4 does so for the Canada-U.S. case. Figure 5

does so for all OECD city pairs.8 We see, especially in Figure 4, that the border

effect holds pointwise, not just on average. We also see some structure emerge when

we organize city-pairs by nominal exchange rate variability. This is apparent in

Figure 5, where it is clear that higher nominal exchange rate variability is strongly

associated with a higher ratio of common to total variability.

The basic point, then, is that common sources of variation — most obviously

nominal exchange rates — play a minor role in accounting for variation in changes

in international, microeconomic relative prices. It is interesting to contrast this

with what we know about macroeconomic relative prices. The Mussa (1986) ev-

idence is that real and nominal exchange rates are basically the same thing. Put

differently, nominal exchange rates play a major role in accounting for variation in

international relative prices. Is there a contradiction here?

Figure 6 shows that there is not. It plots, for the Canada-U.S. case, the NIPA-

based change in the real exchange rate and the analogous object from Equation (6),

8Including all remaining the remaining city-pairs, beyond the OECD, changes neither the
picture nor the point.
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a time series of the cross-good average Ei(∆qi,jk,t | jk, t), one line for each bilateral

city-pair, jk. The Mussa evidence is quite apparent. The average correlation

between the NIPA and micro-based lines is 0.89. The reasoning is quite obvious.

Most of the variation in good-by-good LOP changes is idiosyncratic. Once we

average-away this variation, we are left with the Mussa facts. To a certain extent

this is true-by-construction; averages vary less than the things being averaged.

But our basic point is not a tautology. It is simply that the magnitude of what is

being averaged away is large. At the good-specific level, there is much more going

on than movement in nominal exchange rates.

5 Discussion

It is not surprising that long-term deviations from LOP exist between two cities.

Retail goods are bundles of traded and non-traded goods and this is exactly what

we should expect. Neither is it surprising that changes in good-level relative prices

are more variable than changes in aggregate prices. This is an obvious implication

of averaging. Qualitatively, then, there is nothing surprising about the above

results. Their importance is strictly related to the magnitude of the effects.

We now report additional results that go beyond ‘magnitude’ and shed some

light on the the economic forces affecting LOP deviations. The basic idea is to

(i) establish links between the time-series and cross-sectional evidence presented

above, and (ii) partition the data into the classic traded versus non-traded di-

chotomy. The combination of (i) and (ii), we think, provides valuable information

for the construction of economic models that can synthesize the micro and macro

economic behavior of exchange rates.9

9Some recent examples are as follows. Sposi (2012) incorporates asymmetric trade costs into
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5.1 Cross-Sectional and Time Series Variation Are Related

Figure 7 reports scatter plots of Ti versus Fi — cross-sectional variance versus time-

series variance — from Equation (3) of Section 3. There is an unmistakable positive

relationship, in particular for the ‘North America’ and the ‘Within-Country’ sub-

sets of the data. Univariate regressions of Fi on Ti yield a positive and strongly

significant slope coefficient for all but the ‘OECD Cross-Border Pairs’ subset (NE

panel), where the coefficient is not significantly different from zero. The slope

coefficients (standard errors) are 0.26 (0.09), −0.0129 (0.14), 0.35 (0.11) and 0.52

(0.11) for the NW, NE, SW and SE panels, respectively. The R2 is 5%, .08%, 6%

and 9%, respectively. These results become sharper — coefficients become more

positive, standard errors become relatively smaller, the R2 coefficient becomes as

large as 25% (‘OECD Within-Country Pairs’) — if we break the data down by

traded versus non-traded goods (anticipating our next set of results).

The message of Figure 7 is simple. Whatever it is that is generating the

relatively large long-run fixed effects that were the focal point of Section 3 —

be it geographic distance, non-traded input costs, product differentiability, etc. —

there seems to be a important link with whatever it is that is generating time-series

variation around these fixed effects. This link is more pronounced for within-

country city pairs, suggesting that nominal exchange rate variation is masking

the relationship between the time-series and cross-sectional variation in the data.

From the perspective of models, our results suggest a potentially informative class

of restrictions. Models of the transmission of shocks — e.g., New Keynesian models

the Eaton and Kortum (2002) model and, using Penn World Table sectoral data, finds that trade
costs can account for roughly half of the cross-sectional price dispersion. See also Giri (2012).
Alessandria and Kaboski (2011) persuasively argue that retail search costs are important for
absolute price dispersion. Regarding time-series variation, Kehoe and Midrigan (2007) show that
a time-dependent pricing model can generate volatility and persistence in LOP deviations that is
qualitatively similar to what we find here.
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with nominal rigidities — can be informed by the cross-sectional variation in the

data. When attempting to identify the frictions that are important for the time-

series behavior of relative prices one should look to the frictions that generate

long-run LOP deviations for confirmation.

5.2 Tradeability

Our next set of results relate to the tradeability of individual goods. A useful refer-

ence point is Engel (1999) and many papers that have followed. Engel found that,

in contrast to the seminal Balassa-Samuelson model (Balassa (1964), Samuelson

(1964)), variability in traded goods prices seems to play an important, perhaps

dominant role in accounting for real exchange behavior. Engel’s results, however,

are based on macroeconomic index-number data and can only speak to time-series

variation. Here, we ask if microeconomic absolute-price data tell a similar story

and/or offer any new insights.

Tables 5 and 6 report the same variance decomposition as Tables 1 and 4, but

with the goods categorized as being either tradeable or non-tradeable.10 The basic

pattern that emerges is quite sharp: (i) cross-sectional variation is larger for non-

traded goods, (ii) time-series variation is larger for traded goods. The latter is more

pronounced than the former. This is particularly apparent in Figure 8, where we

plot the individual data-points that comprise the averages reported in Table 6.11

10Appendix A describes the procedure with which we categorize every good as being either
tradeable or non-tradeable.

11Figure 8 reports data on time-series variation. We do not report the analogous graph for
cross-sectional variation because the structure of the data makes it hard to interpret. The reason
(admittedly complex) derives from how we choose which dimensions of the data to condition on.
Our measures of cross-sectional variation, Ti, condition on goods. There are, of course, some
traded goods with relatively high Ti and some traded goods with relatively low Ti. Table 5 shows
that, on average, Ti is relatively low for traded goods. A plot of Ti for traded versus non-traded
goods, analogous to Figure 8, would (weakly) demonstrate this average, but not much more. This
is because we lack any organizational structure with which to compare individual traded goods to
individual non-traded goods. Figure 8, on the other hand, derives from our city-pair-conditioned
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The figure shows that city-pair-specific time-series variance is almost pointwise

greater for traded than for non-traded goods, and that this pattern is almost

exclusively driven by the good-specific component of the time-series variance.

The traded versus non-traded dimension of our data, then, is both consistent

with Engel’s (1999) basic finding, and with the main idea of the Balassa-Samuelson

model. Non-traded goods are associated with large, long-run deviations from LOP.

The difference with respect to traded goods is not large (Table 5), but it is cer-

tainly not the case that traded-good LOP deviations dominate in the cross-section.

Traded goods, on the other hand, do dominate in the time-series dimension. As an

anecdote, it’s what one would expect if (differential) shocks to the cost of petroleum

products and electronic components were large relative to those of haircuts, but

the long-run cost of getting a haircut in one location is always a lot larger than in

another location. As we will see below, this anecdote is consistent with the overall

behavior observed in our data.

5.3 Implications

We summarize the above findings as three empirical facts. Define x as a continuous

measure of tradeability, and recall that T and F denote cross-sectional and time-

series variability, respectively (Equation (3), Section 3). The facts are that

1. Cov(T, F ) > 0

2. E(T |x) is decreasing in x.

3. E(F |x) is increasing in x.

data, Cjk and Ijk. The variability within traded and non-traded goods categories averages out,
revealing the striking pattern that we see in the figure.
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At first blush there might seem to be a contradiction here. If non-traded goods have

high cross-sectional variation (Fact 2), and cross-sectional variation is positively

associated with time-series variation (Fact 1), then shouldn’t non-traded goods

also have relatively high time-series variation (thus contradicting Fact 3)?

The answer is no, not necessarily. This logic is flawed because is confuses

unconditional covariance with covariance in conditional means. It ignores the pos-

sibility that goods differ in a higher-dimensional way than just tradeability. In fact,

these three facts indicate that there must necessarily be another source of varia-

tion. To see this clearly, consider the following decomposition of the unconditional

covariance:

Cov(T, F ) ≡ ExCov
(
T , F | x

)
+ Covx

(
E(T |x) , E(F | x)

)
,

where, as above, the subscript denotes the variable that the moment is integrating

over (‘unconditional covariance equals average conditional covariance plus covari-

ance of conditional means’). Fact 1 says that the LHS is positive and Facts 2 and 3

say that the second RHS term is negative. So ExCov
(
T , F | x

)
must be positive;

conditional on a level of tradeability, high T is associated with high F . This must

be strong enough to counter the negative term. This means that there must be

a second source of variation because, if not, then Cov
(
T , F | x

)
= 0, making

Cov(T, F ) > 0 impossible.

So, there must be a second source of variation. Call it y.

Cov(T, F ) ≡ EyCov
(
T , F | y

)
+ Covy

(
E(T | y) , E(F | y)

)
(7)

Things aren’t as clear now because we don’t know what y is. However, it’s easy

to show that, if T and F are linearly related to x and y, then Facts 1-3 imply that
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EyCov
(
T , F | y

)
< 0. This is just the standard ‘omitted variable’ story. Think

of a scatter-plot of Ti against Fi with two groups of points, one close to the origin

and one far away. The variable y is associated with distance from the origin. The

variable x, tradeability, is associated with a negative relationship between T and F

in each group of points (i.e., conditional on y). This tells us that the second term

on the right must be positive and must be relatively large, something we return

to when summing-up.

To better articulate what we think is going on, we label y as differentiability and

write (x, y) as the pair of characteristics that define each good, i. LOP deviations

can therefore be written qjk,t(x, y). Next, for every city pair jk with a positive

long-run LOP deviation, (i.e., Et(qjk,t(x, y) | jk, (x, y)) > 0), the symmetric coun-

terpart, kj, must have a negative long-run mean. Without loss of generality, we

ignore all of the latter and write

qt(x, y) = α(x, y) + σ(x, y) εt , (8)

where α, σ > 0, εt is a shock that could have some dynamics, and the unnecessary

notation jk has been suppressed. Equation (8) says that each LOP deviation

depends on a good-specific, long-run ‘fixed effect,’ α(x, y), and good-specific time-

series variance, σ2(x, y).12 This equation isn’t implementable for us because we

lack data on y. It is simply a labeling device that helps us exposit some intuition

for what Facts 1-3 are saying.

12There is good reason to believe that α and σ might also depend on the particular location
pair, jk. For example the long-run LOP deviation α, might depend on the geographical distance
between cities j and k. We ignore this because our analysis is focused on variation in the goods-
dimension, thus averaging-away these sorts of things. That is, Fi asks, for good i, what is the
average long-term LOP deviation across all city pairs. Similarly, Ti measures the cross-location,
average time-series variance.
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Fact 1 says that both α(x, y) and σ(x, y) are increasing in y. The former is

natural. It says that high differentiability permits producers to sustain relatively

large long-run markups and LOP deviations. It’s also consistent with differen-

tiable goods being more susceptible to persistent measurement error such as an

inadequate accounting for quality. The latter — σ(x, y) increasing in y — might

be less natural, but it’s certainly plausible. If, for instance, time-variation in LOP

deviations is bounded by goods-market arbitrage, then this says that the arbitrage

bands are wider for more differentiable goods. ‘A larger LOP deviation is needed

to initiate arbitrage in the market for cars than in the market for wheat.’ Alterna-

tively, one can just as easily imagine that differentiable goods are produced using

a less-diversified production structure and/or are subject to larger demand shocks.

Facts 2 and 3 say that α(x, y) is decreasing in x, but σ(x, y) is increasing in x.

Again, the former is quite natural; non-traded goods exhibit higher long-run LOP

deviations. This is one of the pillars of trade theory. The latter, in contrast, is

hard to call natural. Taken at face value, it says that traded goods have ‘bigger’

LOP deviations than non-traded goods! Indeed, this is what made Engel’s (1999)

findings so provocative. Equation (8) shines some light. It says that, while the

classical traded/non-traded dichotomy gets it right in the long-run, in the short-

run traded goods are affected by shocks that are more volatile than those affecting

non-traded goods. This seems plausible to us. It seems plausible that shocks to

the relative cost of haircuts are less volatile than shocks to the relative cost of

food.

We offer two observations in support of all this ‘plausbility.’ The first is obvi-

ous. ‘Core CPI’ is widely-viewed as being more reliable than ‘Headline CPI.’ The

difference between the two is that (i) the former is less volatile than the latter,

and (ii) the former excludes food and energy, two of the more tradeable goods out
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there. We are saying the same thing.

Our second observation is that the qualitative behavior of these CPI indeces

shows up in our micro data. Recalling that Pijt is the local-currency price of good

i in city j at date t, we define the price change, net of the city-specific overall

inflation rate, as

vijt ≡ ∆pijt − Ei

(
∆pijt | j, t

)
,

where p is the logarithm of P and ∆ denotes the change from t− 1 to t. We then

compute the good-specific, average price volatility as

vi = Ej

(
Stdev(vijt)

)
. (9)

Figure 9 plots the estimated cross-sectional density for vi, where i is dichotomized

by traded/non-traded goods. What we see is consistent with our supposition. This

simple measure of the volatility of traded goods prices is 0.14, substantially higher

than that for non-traded goods prices, 0.10.

To summarize, consider again the scatter plots in Figure 7. The most basic

model of how tradeability affects price dispersion — the Balassa-Samuelson — pre-

dicts that points associated with goods that are more tradeable should lie closer to

the origin (taken literally, it suggests that the traded-goods points should lie on the

origin). What we’ve found elaborates on their basic intuition. In the vertical di-

mension of the graphs, we do see the Balassa-Samuelson idea at work. In the long-

run, traded goods exhibit less cross-sectional price dispersion. In the horizontal

dimension, in contrast, the opposite is true. Traded goods exhibit more time-series

variation, something we’ve attributed to higher-volatility in local-currency prices.

Finally, looking back at Equation (7), we’ve found evidence of a second source of
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(cross-good) variation, above-and-beyond tradeability. This second source, y, must

move both cross-sectional and time-series dispersion in the same direction and its

effect must be large enough to cloud the negative relationship between T and F

that is induced by tradeability (i.e., Covy(E(T | y) , E(F | y)) is large and posi-

tive). We’ve labeled this source of variation ‘differentiability,’ but this was only for

expository purposes. Theory is rife with other candidates, such as those related to

the distribution of final goods. It could also just be i.i.d. measurement error. We

leave the modeling and measurement of y for future work and hope that our simple

variance decompositions can help discriminate between alternative candidates.

6 Conclusions

This paper’s objective is to document some facts about microeconomic interna-

tional relative prices that are informative for economic models and for the inter-

pretation of aggregate data. We find that long-term LOP deviations — good-and-

city-specific “fixed effects” — dominate the distribution of international relative

prices. Nominal exchange rates play a relatively minor role in determining the

relative cost of goods and services between, say, Tokyo and Los Angeles. Some

goods are just always expensive in Tokyo and others are just always expensive in

LA.

This is a statement about absolute deviations from LOP. Much of the exist-

ing literature on the behavior of real exchange rates — both aggregate and less-

aggregate data — has focused on changes. Our second set of findings speaks to

this evidence. We find that changes in nominal exchange rates play a relatively mi-

nor role in whatever it is that moves microeconomic relative prices across national

borders. Other shocks (and probably a good dose of time-varying measurement
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error) are far more important.

When we consider the long-run dispersion and the short-run dispersion to-

gether, we find that there are some connections that are informative for what

distinghishes goods from one another. The traditional characteristic, tradeability,

does have some explanatory power in the cross-section. But there’s much more

going on. A second source of cross-sectional variation is more important than

tradeability, accounting for what is essentially a ‘level effect.’ It moves both the

cross-sectional and the time-series variance in the same direction. It also shows

us that the effect of tradeability is more complex than the classical model sug-

gests. While more tradeability is associated with less long-term, cross-sectional

dispersion, it is also associated with more time-series dispersion.

These results raise a number of interesting questions for further research. First,

what is the second source of cross-good dispersion in LOP deviations? In Section 5

we labeled it “differentiability,” and we provided some discussion that is consistent

with this label, but due to data limitations we cannot really say much more than

‘there’s a second source of variation and here’s what it looks like.’ Second, why

do traded goods display more time-series variance than non-traded goods? We

provided evidence — both anecdotal and statistical — suggesting a very simple

answer; ‘the shocks are bigger.’ But a richer explanation obviously needs to go

deeper. The set of goods that are traded is certainly an endogenous outcome.

Perhaps what we are finding here actually motivates trade? If supply and demand

shocks to the traded goods sectors of the economy are inherently larger, then

perhaps a role played by trade is to facilitate the smoothing of such shocks, so

that a region hit by a bad apple harvest doesn’t have to dramatically switch to

the consumption of pears? Our hope is that our simple variance decompositions

may be informative for the quantitative study of questions like this one.
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Finally, the broad economic implications of our results — even the simpler ones

— seem interesting to us. For example, there is a popular notion that nominal

exchange rate ‘noise’ distorts the international flow of goods and capital. This

now seems less convincing. Yes, as Mussa (1986) so provocatively pointed out 20

years ago, nominal exchange rates and aggregate, CPI-based real exchange rates

are essentially the same thing. This is true in our data just as it was in Mussa’s.

Yes, nominal exchange rates seem disconnected in many ways from macroeconomic

fundamentals. But does this mean that nominal exchange rates are distorting the

allocative role of the international price system? Our results indicate that there’s

a lot going on within the distribution of international prices which is not apparent

in the behavior of the mean of the distribution. Exchange rates govern the mean,

not variation around the mean. Whatever it is that is driving the variation, it is

this that probably plays the dominant role in determining allocations. Firms don’t

export and import the CPI basket. They import and export goods and services.

The consumer price signals which inform these goods flows are subject to many

shocks of which the nominal exchange rate is but a relatively small one.
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Appendix A

Data Description

The EIU dataset consists of local-currency retail prices, inclusive of sales tax,

on as many as 301 goods and services, sampled in 123 cities from 78 different

countries. A list of all goods-and-services and all cities is available at http://

bertha.tepper.cmu.edu/telmerc/eurostat. The data are annual, 1990-2005.

The country with the most intranational observations is the U.S., with 16, followed

by Australia, China and Germany with 5, Canada with 4, Saudi Arabia with 3, and

Brazil, France, Italy, Russia, Spain, Switzerland, UK, India, Japan, Vietnam, New

Zealand with 2. Average nominal exchange rates for each calendar year are also

provided by the EIU. We performed an extensive set of reliability checks using our

own nominal exchange rate data. Aside from the Turkish lira, which we replaced

with data from Datastream and IFS, the EIU data proved to be of high quality.

We transform the data as follows. We denote Pijt as the local-currency price of

good i in city j in year t and Sjk,t as the date t nominal exchange rate between cities

j and k, in units of city k (Sjk,t = 1 if cities j and k share the same currency). We

transform prices into bilateral log deviations from the law-of-one-price (LOP):13

qi,jk,t = log(
PijtSjk,t
Pikt

) , (A1)

The data contain many missing observations. We clean the data using the following

algorithm. First we choose a set of cities (e.g., OECD, North America, etc.).

13A previous version of the paper employed an alternative LOP measure, the log deviation from
the cross-city geometric average: log(Sjn,tPijt)/

∑M
j=1 log(Sjn,tPijt) where M denotes the total

number of cities and n denotes the numeraire currency in units of which all prices are expressed
(our measures of price dispersion are independent of the choice of the numeraire currency). While
this definition results in lower overall LOP variability (by construction), the main message of our
paper remains unchanged.
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Second, for each year, we eliminate any good that has data for less than 50% of

the cities. Third, we remove outliers, defined as a relative price greater than 3 or

less than 1/3. Fourth, we repeat step 2. This defines our basic data-structure,

having done a first-pass removal of outliers and goods with too little cross-location

data. Our panel is unbalanced, having (for example) eliminated some goods for

earlier years but not later years. Subsequent calculations involve further cleaning.

Whenever we compute a time-series moment, we insist that each good-city pair

have a complete set of time-series observations. For cross-sectional moments we

insist that a given good (or city) have 75% or more of the cities (goods) represented.

Finally, we have extensively experimented with different cleaning algorithms (e.g.,

eliminating goods with less than 75% of observations, using totally balanced panels,

etc..) and our results do not change in qualitatively-important ways. Our view is

that for the broad variance decompositions that are the focal point of this paper,

an unbalanced panel is unlikely to be a problem.

Our traded versus non-traded classification is based on country-specific ratios

of imports to GDP, based on the 6-digit Harmonized System concordance between

import values available through the TRAINS dataset and the individual goods

from the EIU prices database. This measure is averaged across locations for each

good to obtain good-specific measure of tradeability. This leaves us with, typically

(across the different subsets of cities that we examine) about 50 non-traded goods

and 200 traded goods. The fact that traded goods are over-represented in the

EIU data is unavoidable. For a more detailed discussion of this, and many more

pros and cons of the EIU data, see Andrade and Zachariadis (2012) who provide

a very thorough and careful analysis, including tables that list the traded versus

non-traded goods that are very similar to our study.

Matlab code is available upon request from the authors. The code will read in
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the generic form that the EIU distributes the data in (in Excel spreadsheets). The

data is, by now, widely available, at many academic libraries for example.
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Table 1
Variance in Absolute LOP Deviations

Cross Time Cross Sectional
Total Sectional Series Total

U.S. 0.128 0.071 0.061 0.559

Canada-U.S.
Combined 0.138 0.078 0.065 0.564
International 0.124 0.057 0.073 0.462
Intranational 0.127 0.071 0.061 0.554

OECD
Combined 0.215 0.143 0.077 0.666
International 0.221 0.147 0.079 0.667
Intranational 0.123 0.069 0.058 0.561

World
Combined 0.270 0.186 0.089 0.690
International 0.275 0.190 0.091 0.691
Intranational 0.118 0.065 0.057 0.551

The table reports cross-good averages of the variables Ti and Fi from Equations
(2-3), reproduced here:

Var jk,t(qi,jk,t | i) = Var jk(Et[qi,jk,t | i, jk]) + Ejk[Var t(qi,jk,t | i, jk)]

= Ti + Fi .

Section 3 provides definitions and a detailed discussion. The first column of num-
bers are

∑
i(Ti + Fi)/M , where M is the number of goods. The second and third

columns report the analogous averages of Ti and Fi, respectively. The last col-
umn is simply the ratio of the second to the first. The extent to which the sum
of columns 2 and 3 is inconsistent with column 1 is due to missing observations.
Figure 7 provides information on the cross-good dispersion in Ti and Fi.
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Table 2
City-Specific Variation in Long-Run Average LOP Deviations

U.S. Canada-U.S. OECD World

Total 0.0781 0.0838 0.1528 0.1821
City-Pair 0.0130 0.0109 0.0231 0.0362
Residual 0.0652 0.0731 0.1308 0.1491

City-Pair/Total 0.1660 0.1297 0.1509 0.1989

The table reports a variance decomposition of the variation in long-run average
LOP deviations into a city-specific component and a residual. Specifically, the
time-average of the LOP deviation for good i between city-pair jk is denoted
µi,jk ≡ Et(qi,jk,t | i, jk). This is then written

µi,jk = µjk + εi,jk

=⇒ Var i,jk(µi,jk) = Var jk(µjk) + Var i,jk(εi,jk) .

Rows 1, 2 and 3 report estimates of the total variance, Var i,jk(µi,jk), the city-pair-
specific variance, Var jk(µjk) and the residual variance, Var i,jk(εi,jk) for U.S. city
pairs, Canada-U.S. city pairs, all OECD pairs and all global pairs, respectively.
The last row reports the fraction of the total variance attributable to city-effects.
This decomposition is the same as “city-pair-specific dummy variables,” or “1-
factor ANOVA.” Additional details and discussion are provided in Section 3.1.
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Table 3
City-Specific and Good-Specific Variation in Time-Series Variances
of Absolute LOP Deviations

U.S. Canada-U.S. OECD World

Total 0.00346 0.00364 0.00432 0.00585
Good 0.00105 0.00090 0.00073 0.00069
City-Pair 0.00007 0.00009 0.00040 0.00090
Residual 0.00236 0.00268 0.00327 0.00438

Good/Total 0.30491 0.24833 0.16920 0.11717
City-Pair/Total 0.02157 0.02590 0.09229 0.15385

The table reports a variance decomposition of the total cross-sectional variance of
the time-series variances of absolute LOP deviations into city and good-specific
sources of variation, and a residual. More specifically, we denote the time-series
variance of the absolute LOP deviation for good i between city-pair jk as σ2i,jk ≡
Var t(qi,jk,t | i, jk). We write

σ2i,jk = σ2i + σ2jk + εi,jk

=⇒ Var i,jk(σ2i,jk) = Var i(σ
2
i ) + Var jk(σ2jk) + Var i,jk(εi,jk) .

Rows 1, 2, 3 and 4 report estimates of the total variance, Var i,jk(σ2i,jk), the

good-specific variance, Var i(σ
2
i ), the city-pair-specific variance, Var jk(σ2jk) and

the residual variance, Var i,jk(εi,jk) for U.S. city pairs, Canada-U.S. city pairs,
all OECD pairs and all global pairs, respectively. The last two rows report the
fractions of the total variance attributable to good and city-pair effects. This
decomposition is the same as “city-pair and good-specific dummy variables,” or
“2-factor ANOVA.” Additional details and discussion are provided in Section 3.1.
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Table 4
Variance of Changes in LOP Deviations

Total Common Idiosyncratic Common
(across goods) (good-specific) Total

U.S. 0.042 0.001 0.041 0.017

Canada-U.S.
Combined 0.045 0.002 0.043 0.041
International 0.048 0.004 0.045 0.073
Intranational 0.043 0.001 0.042 0.018

OECD
Combined 0.050 0.009 0.041 0.185
International 0.051 0.010 0.041 0.200
Intranational 0.041 0.001 0.040 0.017

World
Combined 0.060 0.013 0.047 0.218
International 0.061 0.014 0.047 0.224
Intranational 0.041 0.001 0.040 0.018

The table reports a decomposition of the variance of changes in LOP deviations into common
and idiosyncratic components. “Common” means “time-variation, common to all goods for each
location-pair,” and “idiosyncratic” means “time-variation that is good-specific, for each location
pair.” More specifically, the table reports cross-location averages of the variables Cjk and Ijk
from Equation (6), Section (4), reproduced here:

Var i,t(∆qi,jk,t | jk) = Var t
(
Ei(∆qi,jk,t | jk, t)

)
+ Et

(
Var i(∆qi,jk,t | jk, t)

)
= Cjk + Ijk .

Cjk measures, for a given city pair jk, variation in LOP changes that are common across goods.
Ijk measures variation (in changes) that is specific to each good. Section 4 provides a more
detailed discussion. The first column of numbers (‘Total’) contains

∑
jk(Cjk + Ijk)/N , where N

is the number of city-pairs. The second and third columns report the analogous averages of Cjk

and Ijk, respectively. The last column is simply the ratio of the second to the first. The extent to
which the sum of columns 2 and 3 is inconsistent with column 1 is due to missing observations.
Figure 8 provides information on the cross-location dispersion in Cjk and Ijk.
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Table 5
Variance in Absolute LOP Deviations: The Effect of Tradeability

Cross Sectional Time Series
Traded Non-Traded Traded Non-Traded

U.S. 0.063 0.113 0.064 0.048

Canada-U.S.
Combined 0.070 0.138 0.068 0.054
International 0.051 0.099 0.076 0.057
Intranational 0.063 0.142 0.064 0.051

OECD
Combined 0.135 0.181 0.079 0.067
International 0.140 0.182 0.081 0.069
Intranational 0.060 0.113 0.061 0.048

World
Combined 0.184 0.198 0.088 0.098
International 0.188 0.200 0.089 0.100
Intranational 0.057 0.106 0.059 0.045

The table reports cross-good averages of the variables Ti and Fi, broken-down
by the tradeability of the goods. These variables are defined by Equations (2-3),
which we reproduce here:

Var jk,t(qi,jk,t | i) = Var jk(Et[qi,jk,t | i, jk]) + Ejk[Var t(qi,jk,t | i, jk)]

= Ti + Fi .

Section 3 provides further definitions and a detailed discussion. This table is
identical to Table 1, except for the traded, non-traded distinction.
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Table 6
Variance in Changes in LOP Deviations: The Effect of Tradeability

Cross Sectional Time Series
Traded Non-Traded Traded Non-Traded

U.S. 0.001 0.002 0.045 0.023

Canada-U.S.
Combined 0.002 0.003 0.047 0.023
International 0.004 0.005 0.049 0.024
Intranational 0.001 0.002 0.046 0.023

OECD
Combined 0.010 0.010 0.044 0.023
International 0.010 0.010 0.044 0.023
Intranational 0.001 0.001 0.043 0.022

World
Combined 0.013 0.015 0.050 0.030
International 0.014 0.016 0.050 0.031
Intranational 0.001 0.002 0.043 0.023

The table reports cross-city-pair averages of the variables Cjk and Ijk, where the
goods used in the calculations are categorized as either traded or non-traded. The
variables Cjk and Ijk represent “common time-series variation” and “good-specific
time-series variation.” They are defined by Equation (6), Section 4, which is
reproduced here:

Var i,t(∆qi,jk,t | jk) = Var t

(
Ei(∆qi,jk,t | jk, t)

)
+ Et

(
Var i(∆qi,jk,t | jk, t)

)
= Cjk + Ijk .

Section 4 provides further definitions and a detailed discussion. Figure 8 plots the
city-pair specific estimates of Cjk and Ijk that are the data used in to compute
the averages in this table.
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Figure 2
Distribution of LOP Deviations: log qi,jk,t
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Density of log LOP deviations across (i) U.S. and Canadian location-pairs, and
(ii) all location-pairs. The densities describe variation in qi,jk,t across goods i and
location-pairs jk, where qi,jk,t is computed as

qi,jk,t = log(
Pij,tSjk,t
Pik,t

) ,

and P and S are local-currency prices and the nominal exchange rate. For each
set of cities there are four lines: t = 1990, 1995, 2000 and 2005.
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Figure 3
Decomposing the Variance in Absolute LOP Deviations
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The intent of this figure is to help the reader visualize the variance decomposition in Equa-

tion (3) of Section 3. Start with the upper-left graph. Each line represents the time-series

of log LOP deviations for a traded good, apples, between two particular North American

cities (e.g., Toronto/Pittsburgh). Our data represent 16 U.S. cities and 4 Canadian cities,

which makes for 190 bilateral pairs. The graph, therefore, could have as many as 190 lines

on it. To make it legible, we randomly select and plot just 20 of these pairs (the quali-

tative content of the graph is not changed as we increase the number of pairs and choose

a different random sample). The upper-right graph does the same thing for a non-traded

good, haircuts. The middle-two graphs plot the time-series mean of each of the lines in the

upper-two graphs. The cross-sectional variance of these time-series means is our variable

Ti, i=(apples, haircuts), from Equation (3). Finally, the lower-two graphs are simply the

de-meaned versions of the upper-two graphs. Our variable Fi from Equation (3) is the

cross-sectional mean of the time-series variance of each of these lines. Further discussion

is provided in the text of Section 3.
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Figure 4
Common Variation in Changes in Good-by-Good LOP Deviations
Canada-U.S. City-Pairs
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The horizontal axis represents Canada-U.S. bilateral city-pairs. The city-pairs are
sorted by geographic distance, from closest apart to farthest apart. There are 4
Canadian cities and 16 U.S. cities, which make for 190 bilateral pairs. Of these,
54 were eliminated due to insufficient data, leaving 84 intranational pairs and 52
international pairs. The upper (blue) graph represents the latter and the lower
(red) line represents the former. The vertical axis represents the fraction of the
variance in the good-by-good changes in LOP deviations attributable to a source
of variation which is common across all goods (for each city-pair). This fraction is,
for each city-pair jk, Cjk/(Cjk + Ijk) from Equation (6) in Section 4 of the text.
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Figure 5
Common Variation in Changes in Good-by-Good LOP Deviations
OECD City-Pairs
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The horizontal axis represents OECD bilateral city-pairs. The city-pairs are sorted
by the volatility of the nominal FOREX depreciation rate between each pair of
cities, from lowest to highest. The vertical axis represents the fraction of the
variance in the good-by-good changes in LOP deviations attributable to a source
of variation which is common across all goods (for each city-pair). This fraction is,
for each city-pair jk, Cjk/(Cjk + Ijk) from Equation (6) in Section 4 of the text.
The top (blue) line represents international city-pairs and the bottom (red) line
represents intranational city-pairs. The last bunch of international city-pairs all
include Istanbul. A list of the city-pairs and depreciation volatilities is available
at:

http://bertha.tepper.cmu.edu/eurostat/oecd1.txt
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Figure 6
Common Component of Changes in LOP Deviations and Nominal
Depreciation Rate
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This graph corresponds to the Canada-U.S. city pairs represented in Figure 4. The
dashed (blue) line is the annual depreciation rate in the U.S.-Canada nominal ex-
change rate (USD per CAD). It is computed using the annual, nominal exchange
rate data provided by the EIU, which corresponds to the times during the year dur-
ing which the goods were sampled. However, the graph is not changed much if one
computes annual, nominal exchange rates as averages of daily exchanges rates over
the calendar year. The solid (red) lines are the ‘common factors,’ Ei(∆qi,jk,t | jk, t),
extracted from the changes in LOP deviations that are the basis of the variance
decomposition, Equation (6) in Section 4 of the text. There is one solid (red) line
per city-pair, jk. These lines are simply the time t, cross-good averages of changes
in LOP deviations. The average correlation between each of the solid (red) lines
and the dashed line is 0.89.
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Figure 7
Variation in Absolute LOP Deviations: Time-Series Versus Cross-Sectional
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The figure reports scatter plots of time-series variance Ti (horizontal axes) versus
cross sectional variance Fi (vertical axes), defined by Equation (3) in Section 3,
reproduced here:

Var jk,t(qi,jk,t | i) = Var jk

(
Et(qi,jk,t | i, jk)

)
+ Ejk

(
Var t(qi,jk,t | i, jk)

)
= Ti + Fi .

Regression slope coefficients, (standard errors) are 0.26 (0.09), −0.0129 (0.14), 0.35
(0.11) and 0.52 (0.11) for the NW, NE, SW and SE panels, respectively.
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Figure 8
Time-Series Variance in LOP Changes: Common and Good-Specific
Variation Distinguished by Tradeability
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5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

T
o

ta
l

0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

5 6 7 8 9 10
0

0.01

0.02

0.03

C
o

m
m

o
n

0 0.05 0.1 0.15
0

0.01

0.02

0.03

5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

G
o

o
d

−S
p

ec
if

ic

Log Distance
0 0.05 0.1 0.15

0

0.02

0.04

0.06

0.08

FX Variability

This graph shows that variation in changes in LOP deviations — “time-series variation”
— is in general larger for traded goods than non-traded goods, and that this effect is
almost entirely a feature of good-specific time-series variation as opposed to location-pair
specific variation. Each point corresponds to a city-pair-specific object from Equation (6),
Section 4, reproduced here:

Var i,t(∆qi,jk,t | jk) = Var t

(
Ei(∆qi,jk,t | jk, t)

)
+ Et

(
Var i(∆qi,jk,t | jk, t)

)
= Cjk + Ijk .

The graph corresponds to all OECD city pairs. The middle two panels report Cjk, the

common variation across all goods for city-pair jk. The bottom two panels report Ijk, the

good-specific variation, and the top two panels report the total variation, Cjk + Ijk. The

city pairs are organized by either distance from one-another (left-most column of panels),

or by nominal exchange rate variability (right-most column of panels).
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Figure 9
Distribution of Good-Specific, Local Currency Price Volatility
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This graph plots kernel density estimates of the distribution of vi, parsed into traded and

non-traded goods, from Equation (9) from Section 5.3. The variables vi are, for each

good i, the averages, across locations, of the time-series volatilities of log changes in local-

currency prices. The location-specific inflation rates are removed before computing the

volatilities. A high value for vi simply says that, for this good, the volatility of local-

currency price changes is large, on average, across cities. See Section 5.3 for an algebraic

derivation.
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