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1 Introduction

Aggregate real exchange rates are among the most scrutinized of economic variables because

their persistence and volatility are much higher than what economists believe is consistent with a

plausible degree of price rigidity. The time-dependent pricing model offers a convenient theoretical

link between price stickiness and the stochastic properties of real exchange rates. Chari, Kehoe, and

McGrattan (2002, CKM) show that to generate the observed persistence of CPI-based aggregate

real exchange rates, prices need to be exogenously fixed for at least one year. This degree of price-

stickiness, however, appears implausible based on recent evidence by Bils and Klenow (2004) who

find a median duration between price changes of only 4.3 months in U.S. micro-data.

An emerging literature using international micro-data finds the half-life of deviations from the

Law of One Price (LOP) for the median good in the neighborhood of 18 months, considerably

lower than the consensus 3-5 year half-lives of aggregate real exchange rates (Crucini and Shintani

(2008)). This evidence suggests that studies using prices of individual goods, rather than price

indices, is a promising approach for evaluating time-dependent pricing models and understanding

short-run international relative price dynamics. An important contribution along this line is Kehoe

and Midrigan (2007) who allow different price stickiness across individual goods and show that

the persistence in LOP deviations is equal to ‘the Calvo parameter,’ the probability of price non-

adjustment at the good level. Their empirical analysis using real exchange rates of 66 individual

goods shows that the frequency of no price adjustment is higher for goods that exhibit more

persistent deviations from the LOP, as suggested by the theoretical model. However, the persistence

puzzle is still not resolved in the sense that the observed frequencies of micro price changes are

too high to replicate the persistence of real exchange rates for most goods in the cross-section.

In addition, the model does not match the time series variability of LOP deviations observed in

the micro-data. These theoretical and empirical results point to the need to break the tight link

between the frequency of price adjustment and the LOP persistence parameter characterizing the

standard Calvo-type sticky price model.

We break this tight link by extending the Kehoe-Midrigan model to allow for information stick-

iness. That is, in addition to the standard Calvo pricing, we assume only a fraction of firms update

their information set each month. Thus price dynamics become a convolution of price adjustment

timing and information updating. In the macroeconomic literature, Mankiw and Reis (2002) show

that a model of information stickiness, or inattentiveness, is capable of explaining the observed slow
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response of aggregate inflation to monetary shocks much better than sticky prices alone. When the

information stickiness augments the Calvo-type sticky price mechanism, less frequent information

updating leads to higher price persistence, at a given frequency of price adjustment (Dupor, Ki-

tamura, and Tsuruga (2008, DKT)). With plausible assumptions on international money growth

processes, a similar effect takes place to increase both the persistence and volatility of real exchange

rates.

In addition to the generalization of the sticky price model to allow for the information stick-

iness, our analysis differs from Kehoe and Midrigan (2007) in several ways. First, our empirical

analysis is based on an international retail price survey which records local currency prices for

highly disaggregated individual goods and services spanning most of the CPI basket. Using this

survey we expand the number of products from 66 products used in Kehoe and Midrigan (2007)

to 165. Another advantage of this data is that the survey is conducted by a single agency, the

Economist Intelligence Unit, so we expect more comparability in the quality of the products among

international cities. An important limitation of our data is its annual frequency and relative short

time-span, from 1990 to 2005. As in the case of Crucini and Shintani (2008), the difficulty of

estimating persistence with short time-series is mitigated by utilizing the dynamic panel feature of

the data.

Second, our theoretical model allows for the presence of multiple cities in each country and for

long-run price deviations between the cross-border city pairs to differ by good and city pair. For

each good, we use the panel of 52 U.S.-Canadian city pairs to estimate a dynamic panel model and

to compute the volatility under an error components model framework.

Third, we examine the effect of the exclusion of sales on the performance of sticky price models

in explaining real exchange rate dynamics. Recently, Nakamura and Steinsson (2008) claim that

the evidence of the fast price adjustment reported by Bils and Klenow (2004) may be strongly

influenced by the presence of sales, or other temporary price reductions. Nakamura and Steinsson

(2008) define the regular price change by excluding sales from the observed price change, and report

that the median frequency of regular price changes increases to the range of 8 to 11 months. Since

prices are stickier based on this alternative definition of price change, it elevates the Calvo model’s

ability to account for important features of the data. This improvement is subject to the caveat

that our model does not explicitly model sales.

The main conclusions of Kehoe and Midrigan (2007) are robust to the change in the data.

Both persistence and volatility are much higher in the EIU data than the prediction of a standard
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Calvo-type sticky price model even if we use (i) more disaggregated retail price data, (ii) panel data

consisting of multiple cities in the U.S. and Canada, and (iii) adjust the frequency of price changes

for temporary sales.

In contrast to the standard Calvo model, the extended model with information stickiness fully

accounts for both persistence and volatility when the average duration between information updates

is 14 to 17 months if sales are not removed and 9 to 12 months if sales are removed. The ability of

our model to replicate the observed persistence and volatility contrasts to another possible extension

of the Calvo model allowing for pricing complementarities. Kehoe and Midrigan (2007) show that

complementary leads to a modest improvement in explaining the persistence and little improvement

in explaining the variance.

The finding that the dispersion of price adjustment frequency and information updating fre-

quency acoss goods are comparable is suggestive of joint endogeneity, raising a challenging identi-

fication issue. While the existing micro evidence on information stickiness is quite limited relative

to that on the frequency of price adjustment, our estimates of the information delay parameter

are broadly consistent with the available survey evidence on the frequency with which firms con-

duct major information updates. Consequently, a deeper understanding of their separate roles will

require decision theory to explicitly account for the costs of collecting, updating and interpreting

economic data in real time. Such an approach is likely to offer insights beyond the traditional menu

cost story.1

This paper is organized as follows: Section 2 presents our model as a generalization of Kehoe and

Midrigan’s model. In Section 3 we examine the model implications for the time series properties of

the good-level real exchange rates. Section 4 describes our data and how we use it to evaluate the

model. We also compare the benchmark sticky price model and our extended model. The study

ends with a discussion of future research in Section 5 .

2 The model

Trade is over a continuum of goods between two countries with multiple cities located in each

country. Under monopolistic competition, firms set prices in local currency to satisfy demand for

a particular good in a particular city. A representative agent in each country chooses consumption

over an infinite horizon subject to a cash-in-advance (CIA) constraint. In what follows, the U.S.
1Examples includes Sims (2003), Woodford (2008) and Gorodnichenko (2008).
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and Canada represent the home and foreign country, respectively, and the unit of time is one month.

The lowest level of aggregation is the brand, z of a particular good. U.S. brands of each good

are indexed z ∈ [0, 1/2] while those in Canada are indexed z ∈ (1/2, 1]. Integrating over brands,

we have the CES indices for consumption of good j in a U.S. city l and a Canadian city l∗, given

by

ct(j, l) =
[∫ 1

0
ct(j, l, z)

θ−1
θ dz

] θ
θ−1

(1)

and

c∗t (j, l
∗) =

[∫ 1

0
c∗t (j, l

∗, z)
θ−1
θ dz

] θ
θ−1

, (2)

where ct(j, l, z) is consumption of a brand z of good j in U.S. city denoted l and c∗t (j, l
∗, z) is the

analog consumption of that brand for a Canadian city, l∗.

CES aggregation across cities l ∈ [0, 1] and l∗ ∈ [0, 1], gives national consumption of good j

within the U.S.

ct(j) =
[∫

ct(j, l)
θ−1
θ dl

] θ
θ−1

, (3)

and Canada,

c∗t (j) =
[∫

c∗t (j, l
∗)

θ−1
θ dl∗

] θ
θ−1

, (4)

respectively.

CES aggregation across goods in each country gives aggregate consumption in the U.S., ct,

ct =
[∫

ct(j)
θ−1
θ dj

] θ
θ−1

(5)

and Canada, c∗t ,

c∗t =
[∫

c∗t (j)
θ−1
θ dj

] θ
θ−1

. (6)

2.1 Households

As in Kehoe and Midrigan (2007) complete markets for state-contingent money claims exist. Agents

decide how many one-period nominal bonds to hold in each state of the world in period t+ 1. U.S.

households hold Bt+1 while Canadians hold B∗t+1 (both denominated in the U.S. dollars).2 The

price of a bond issued at date t, maturing at date t + 1 is denoted by Qt,t+1. Also, Qt,t+h is the

2As Kehoe and Midrigan (2007) argue, it does not matter if foreign (Canadian) consumers hold complete and

state-contingent one-period nominal bonds denominated in the foreign currency (Canadian dollars). It would be

simply a redundant assumption under state-contingent bond markets.
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nominal stochastic discount factor by which all firms, regardless of their country of origin, discount

profits earned in period t+ h back to the present period t.

Households in the each country maximize the discounted sum of U(ct, nt) = ln ct−χnt (χ > 0)

subject to an intertemporal budget constraint and a CIA constraint. The maximization problem

for U.S. households is:

E0

∞∑
t=0

βtU(ct, nt), (7)

s.t. Mt + Et(Qt,t+1Bt+1) = Rt−1Wt−1nt−1 +Bt + (Mt−1 − Pt−1ct−1) + Tt + Πt, (8)

Mt ≥ Ptct, (9)

where β is the discount factor of the household satisfying 0 < β < 1 and Et(·) denotes the expec-

tation operator conditional on the information available in period t.

The left hand side of the intertemporal budget constraint (8) represents the nominal value of

total wealth of the household brought into the beginning of period t+ 1. It consists of cash holding

Mt and bond holdings Bt+1. As shown in the right hand of (8), the household receives nominal

labor income Wt−1nt−1 in period t − 1 which earns gross nominal interest Rt−1 per unit of labor

income until period t in terms of U.S. currency.3 Households carry nominal bonds in amount Bt

and cash holding remaining after consumption expenditures (Mt−1 − Pt−1ct−1) into period t; Pt is

the aggregate price index defined below. Finally, Tt and Πt are nominal lump sum transfers from

the U.S. government and nominal profits of firms operating in the U.S., respectively.4

The equation (9) is the CIA constraint. The aggregate price Pt is given by Pt = [
∫
Pt(j)1−θdj]

1
1−θ ,

where Pt(j) is the aggregate price index for good j; it is a CES aggregate over city-specific prices

for that good: Pt(j) = [
∫
Pt(j, l)1−θdl]

1
1−θ . The price index for good j in a particular city l used in

this aggregation is given by

Pt(j, l) =
[∫

Pt(j, l, z)1−θdz

] 1
1−θ

.

Households in Canada solve the analogous optimization problem except we must convert their

U.S. dollar bond holdings into Canadian dollars at the spot nominal exchange rate, St. Thus the

Canadian-dollar intertemporal budget constraint is

M∗t +
Et(Qt,t+1B

∗
t+1)

St
=
St−1Rt−1

St
W ∗t−1n

∗
t−1 +

B∗t
St

+ (M∗t−1 − P ∗t−1c
∗
t−1) + T ∗t + Π∗t .

3We assume that the government pays interest rate Rt(= 1/EtQt,t+1) on labor income in period t. This assumption

allows households’ intratemporal optimality condition to be undistorted.
4We assume that government’s lump sum transfers and firms’ profits in a country go to households in that country.
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The first order conditions of households in both countries are as follows:

Wt

Pt
= χct (10)

W ∗t
P ∗t

= χc∗t (11)

EtQt,t+1 = βEt

[(
ct+1

ct

)−1 Pt
Pt+1

]
(12)

EtQt,t+1 = βEt

[(
c∗t+1

c∗t

)−1 StP
∗
t

St+1P ∗t+1

]
(13)

Mt = Ptct (14)

M∗t = P ∗t c
∗
t . (15)

The equations (10) and (11) represent intratemporal substitution between labor and consumption

while (12) and (13) represent intertemporal consumption choices across adjacent months. The in-

tertemporal conditions, (12) and (13), are slightly different because Canadians buy state-contingent

one-period nominal bonds denominated in the U.S. dollars. The CIA constraints always bind as

shown in equations (14) and (15).

The nominal wage rate in a country is proportional to the stock of money held by households

in that country. Combining the intratemporal conditions (10) and (11) with the CIA constraints

we have:

Wt = χMt, (16)

W ∗t = χM∗t . (17)

The aggregate real exchange rate is determined by combining the home and foreign intertem-

poral conditions:

qt =
StP

∗
t

Pt
= κ

ct
c∗t
, (18)

where κ = q0c
∗
0/c0.5

The nominal exchange rate is determined by combining (18) with the CIA constraints (14) and

(15):

St = κ
Mt

M∗t
. (19)

5See Appendix A.
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2.2 Firms

The output of brand z of good j in the U.S. is equal to the number of hours allocated to that

activity:

yt(j, z) = nt(j, z) . (20)

Goods are perishable, so the consumption of each good across all cities equals output of that good

in the current period: ∫
ct(j, l, z)dl +

∫
(1 + τ(j, l∗))c∗t (j, l

∗, z)dl∗ = yt(j, z). (21)

We allow for long-run deviations from the LOP across borders through τ(j, l∗), an iceberg trans-

portation cost in exporting good j from the U.S. to a Canadian city indexed by l∗. A firm must

ship (1 + τ(j, l∗)) units of good j to city l∗ for one unit of that good to arrive at the destination.

An analogous market clearing condition holds for each of the Canadian goods:∫
(1 + τ(j, l))ct(j, l, z)dl +

∫
c∗t (j, l

∗, z)dl∗ = y∗t (j, z). (22)

2.3 Price adjustment and information updating

This section begins by reviewing Calvo pricing used by Kehoe and Midrigan (2007) and then

presents our extension to allow for information updating as in Mankiw and Reis (2002). The

equilibrium is briefly described in each setting.

2.3.1 Calvo pricing

We model the nominal price rigidities as in Calvo (1983) and Yun (1996): each month a fraction of

firms 1− λj are randomly drawn and allowed to reset their prices. As suggested by the subscript,

the frequency of price changes varies according to the type of good j and is assumed to be the same

in both countries, good-by-good.

All U.S. firms that sell their good j in city l choose the same optimal price when they adjust

prices in period t. The price PH,t(j, l) solves the following maximization problem:

max
PH,t(j,l)

Et
∞∑
h=0

λhjQt,t+h[PH,t(j, l)−Wt+h]

×
(
PH,t(j, l)
Pt+h(j, l)

)−θ (Pt+h(j, l)
Pt+h(j)

)−θ (Pt+h(j)
Pt+h

)−θ
ct+h,

(23)
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for all cities l ∈ [0, 1]. Here, we used the three demand functions as constraints:

ct(j) =
(
Pt(j)
Pt

)−θ
ct

ct(j, l) =
(
Pt(j, l)
Pt(j)

)−θ
ct(j)

ct(j, l, z) =
(
Pt(j, l, z)
Pt(j, l)

)−θ
ct(j, l).

The optimality condition for PH,t(j, l) is

Et
∞∑
h=0

λhjQt,t+h

(
PH,t(j, l)
Pt+h

)−θ
ct+h

=
θ

θ − 1
Et
∞∑
h=0

λhjQt,t+h

(
Wt+h

PH,t(j, l)

)(
PH,t(j, l)
Pt+h

)−θ
ct+h.

(24)

Similarly, all Canadian firms that export and sell their good j in city l choose the same optimal

price PF,t(j, l) when they adjust prices. The price PF,t(j, l) for these firms solves the maximization

problem:

max
PF,t(j,l)

Et
∞∑
h=0

λhjQt,t+h[PF,t(j, l)− (1 + τ(j, l))St+hW ∗t+h]

×
(
PF,t(j, l)
Pt+h(j, l)

)−θ (Pt+h(j, l)
Pt+h(j)

)−θ (Pt+h(j)
Pt+h

)−θ
ct+h,

(25)

for all cities l ∈ [0, 1]. The optimality condition is of the form similar to (24):

Et
∞∑
h=0

λhjQt,t+h

(
PF,t(j, l)
Pt+h

)−θ
ct+h

=
θ

θ − 1
Et
∞∑
h=0

λhjQt,t+h

(
(1 + τ(j, l))St+hW ∗t+h

PF,t(j, l)

)(
PF,t(j, l)
Pt+h

)−θ
ct+h.

(26)

2.3.2 Calvo pricing with infrequent information updating

We now add information stickiness following Mankiw and Reis (2002) to the model. Consider firms

facing two nominal rigidities. First, each firm has a constant probability of price resetting 1 − λj

as before. Second, with probability of 1− ωj , a firm receives an information update in the current

month. The fraction of firms that fail to get updates, ωj , use the information available from the

most recent update. For tractability, we assume that the two probabilities are independent each

other.

DKT develop this combined stickiness structure to explain persistent inflation dynamics as

we specified above. In DKT, infrequent price changes arise due to the Calvo assumption of price
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changes. However, when firms compute their optimal reset prices, a fraction of firms use the newest

information set and the remaining firms use the stale information set to determine prices. Following

DKT, we employ this structure and refer to it as “dual stickiness” pricing.

All U.S. firms that sell their good j in city l choose different prices according to the vintage

of their information set. When firms are allowed to adjust prices, those with the same vintage of

information choose the same price. Let P kH,t(j, l) be the optimal price reset by U.S. firms conditional

on information of vintage k, its age in months. The price P kH,t(j, l) for these firms solves

max
PkH,t(j,l)

Et−k
∞∑
h=0

λhjQt,t+h[P kH,t(j, l)−Wt+h]

×

(
P kH,t(j, l)
Pt+h(j, l)

)−θ (
Pt+h(j, l)
Pt+h(j)

)−θ (Pt+h(j)
Pt+h

)−θ
ct+h,

(27)

for k = 0, 1, 2, · · · and for all cities l ∈ [0, 1]. Note the only difference between this problem and

the standard Calvo problem is that the expectation is taken with respect to information of vintage

k and prices that reset are indexed both by the time period they are reset and the vintage of the

information used at the point they are reset, P kH,t(j, l).

The optimality condition for P kH,t(j, l) is

Et−k
∞∑
h=0

λhjQt,t+h

(
P kH,t(j, l)
Pt+h

)−θ
ct+h

=
θ

θ − 1
Et−k

∞∑
h=0

λhjQt,t+h

(
Wt+h

P kH,t(j, l)

)(
P kH,t(j, l)
Pt+h

)−θ
ct+h,

(28)

for k = 0, 1, 2, · · · . Canadian firms that sell their good j by exporting to city l also choose prices

based on their information set that they last updated. They choose prices so as to solve the

maximization problem:

max
PkF,t(j,l)

Et−k
∞∑
h=0

λhjQt,t+h[P kF,t(j, l)− (1 + τ(j, l))St+hW ∗t+h]

×

(
P kF,t(j, l)
Pt+h(j, l)

)−θ (
Pt+h(j, l)
Pt+h(j)

)−θ (Pt+h(j)
Pt+h

)−θ
ct+h,

(29)

for k = 0, 1, 2, · · · . The optimality condition is similar to (28):

Et−k
∞∑
h=0

λhjQt,t+h

(
P kF,t(j, l)
Pt+h

)−θ
ct+h

=
θ

θ − 1
Et−k

∞∑
h=0

λhjQt,t+h

(
(1 + τ(j, l))St+hW ∗t+h

P kF,t(j, l)

)(
P kF,t(j, l)
Pt+h

)−θ
ct+h,

(30)

for k = 0, 1, 2, · · · .
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2.3.3 Equilibrium

The monetary authority in each country sets the growth rate of the money stock such that it follows

an AR(1):

lnµt = ρ lnµt−1 + εt, (31)

lnµ∗t = ρ lnµ∗t−1 + ε∗t , (32)

where εt and ε∗t are mean-zero i.i.d shock and µt = Mt/Mt−1 and µ∗t = M∗t /M
∗
t−1. The steady state

(log) money growth rates is set to zero and the common persistence parameter satisfies ρ ∈ [0, 1).

Total transfers from the government to individuals in each country equal domestic money in-

jections minus the lump sum tax from the government paying interest. For the U.S., we have

Tt = Mt −Mt−1 − (Rt−1 − 1)Wt−1nt−1. The total transfer in Canada is of the same form up to

currency conversions: T ∗t = M∗t −M∗t−1 − (St−1Rt−1

St
− 1)W ∗t−1n

∗
t−1.

The profits of U.S. firms accrue exclusively to U.S. households. In other words, Πt =
∫
j

∫ 1
2
z=0 Πt(j, z)dzdj,

where Πt(j, z) is the profit of a U.S. firm. Similarly, the profits of Canadian firms accrue exclusively

to Canadian households: Π∗t =
∫
j

∫ 1
z= 1

2
Π∗t (j, z)dzdj, where Π∗t (j, z) is the profit of a Canadian firm.

Recall, market clearing conditions for good markets were given by (21) and (22). The labor

market clearing conditions are

nt =
∫
j

∫ 1
2

z=0
nt(j, z)dzdj,

n∗t =
∫
j

∫ 1

z= 1
2

n∗t (j, z)dzdj.

Last, but not least, the bond market clears at each date: Bt +B∗t = 0 for all t.

An equilibrium of the Calvo pricing economy is a collection of allocations and prices:

• {ct(j, l, z)}j,l,z, Mt, Bt+1, nt for U.S. households;

• {c∗t (j, l∗, z)}j,l,z, M∗t , B∗t+1, n∗t for Canadian households;

• {Pt(j, l, z), P ∗t (j, l∗, z), nt(j, z), yt(j, z)}j,l,z∈[0,1/2] for U.S. firms;

• {Pt(j, l, z), P ∗t (j, l∗, z), n∗t (j, z), y
∗
t (j, z)}j,l∗,z∈(1/2,1] for Canadian firms;

• Nominal wages and bond prices satisfy the following conditions:

1. Households’ allocations solve their maximization problem;
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2. Prices and allocations of firms solve their maximization problem (23) and (25);

3. All markets clear;

4. The money supply process and transfers satisfy the specifications above.

An equilibrium of the dual stickiness pricing economy is not much different from the definition of

the equilibrium of the Calvo pricing economy. Prices and allocations of firms solve the maximization

problems (27) and (29) instead of (23) and (25).

3 Model predictions for LOP deviations

We now discuss implications of Kehoe-Midrigan model under Calvo pricing and dual stickiness

pricing for the persistence and volatility of deviations from the LOP.

3.1 Calvo pricing

Log-linearization of (24) around the steady state yields the (log) optimal price for U.S. firms that

reset prices in period t:

P̂H,t(j, l) = (1− λjβ)
∞∑
h=0

(λjβ)hEtM̂t+h, (33)

where P̂H,t(j, l) and M̂t are the log-deviation of PH,t(j, l) and Mt from the steady state, respectively.

Here, we use the proportionality of nominal wages to money supply (i.e., (16)) to replace the log-

deviation of Wt with M̂t (i.e., Ŵt = M̂t). Thus, the firms that adjust prices in period t choose their

price to equalize it to the weighted average of the current and future path of nominal marginal

costs.

Analogously, we can derive the log-deviation of optimal price for Canadian firms from (26):

P̂F,t(j, l) = (1− λjβ)
∞∑
h=0

(λjβ)hEt(Ŝt+h + M̂∗t+h).

Substituting out the equilibrium nominal exchange rate, using (19), gives us

P̂F,t(j, l) = (1− λjβ)
∞∑
h=0

(λjβ)hEtM̂t+h. (34)

Thus, P̂F,t(j, l) = P̂H,t(j, l), under our specific preference assumption and the log-deviation of price

index for P̂t(j, l) under Calvo pricing becomes

P̂t(j, l) = λjP̂t−1(j, l) + (1− λj)P̂H,t(j, l).
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It is convenient to normalize P̂H,t(j, l) (and P̂t(j, l)) by M̂t to assure stationarity. The deviation

reset prices from their steady-state relative to the movement in the nominal money supply is

p̂H,t(j, l) = (1− λjβ)
∞∑
h=0

(λjβ)hEt(M̂t+h − M̂t) =
[

λjβρ

1− λjβρ

]
µ̂t, (35)

where p̂H,t(j, l) = P̂H,t(j, l)− M̂t and µ̂t = M̂t − M̂t−1. As it turns out p̂F,t(j, l) = P̂F,t(j, l)− M̂t =

p̂H,t(j, l) so the short-run dynamics of the optimal prices are the same for home and foreign firms

selling the same good at the same location in spite of the transportation costs which drive a wedge

between the prices in the long-run.

The same normalization for the price deviation for good j in city l yields

p̂t(j, l) = λj p̂t−1(j, l)− λjµ̂t + (1− λj)
[

λjβρ

1− λjβρ

]
µ̂t, (36)

where p̂t(j, l) = P̂t(j, l)− M̂t.

The analogous expression for the Canadian price index for good j and city l∗ is

p̂∗t (j, l
∗) = λj p̂

∗
t−1(j, l∗)− λjµ̂∗t + (1− λj)

[
λjβρ

1− λjβρ

]
µ̂∗t , (37)

and the log bilateral real exchange rate for good j across cities l and l∗ is q̂t(j, l, l∗) = ln qt(j, l, l∗)−

ln q(j, l, l∗), where qt(j, l, l∗) is given by

qt(j, l, l∗) =
StP

∗
t (j, l∗)

Pt(j, l)
, (38)

and q(j, l, l∗) is its steady state value.

The next proposition characterizes the short-run good-level real exchange rate dynamics under

Calvo pricing with a slight generalization of Kehoe and Midrigan (2007).

Proposition 1. Under the preference assumption U(c, n) = ln c − χn, the CIA constraints, the

assumption of money growth (31) and (32) and good-specific Calvo pricing, the good-level real

exchange rate between any cities l and l∗ follows an AR(2) process of the form:

q̂t(j, l, l∗) = (λj + ρ)q̂t−1(j, l, l∗)− λjρq̂t−2(j, l, l∗) + θjηt, (39)

where q̂t(j, l, l∗) = Ŝt+ P̂ ∗t (j, l∗)− P̂t(j, l), θj = λj− (1−λj) λjβρ
1−λjβρ , and ηt(= εt−ε∗t ) is i.i.d.(0, σ2

η).

Proof. From (18) and (19), q̂t(j, l, l∗) = p̂∗t (j, l
∗) − p̂t(j, l). Subtracting (36) from (37) yields

q̂t(j, l, l∗) = λj q̂t−1(j, l, l∗) + θj(µ̂t − µ̂∗t ). Because µ̂t − µ̂∗t follow an AR(1) from (31) and (32),

we obtain (39) and proved Proposition 1.
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Proposition 1 of Kehoe and Midrigan (2007) is a special case of the one above: when money

growth rates follow an i.i.d. process (ρ = 0) equation (39) reduces to an AR(1) model with its

coefficient λj and θj = λj as Kehoe and Midrigan (2007) prove.

3.1.1 Persistence

Turning to implications for persistence of the good-level real exchange rates we employ the sum of

autoregressive coefficients (SAR) as the persistence metric. This is often the case in applied work

when moving beyond the AR(1) model (e.g., Andrews and Chen (1994) and Clark (2006)) because

the SAR has a one-to-one relationship to the cumulative long-run impulse response to a shock. We

denote the SAR by αj .

Under Proposition 1, the SAR measure of persistence is αj = λj + ρ(1 − λj); it simplifies to

αj = λj when ρ = 0. Obviously, SAR is strictly increasing in ρ regardless of the degree of price

stickiness under λj ∈ [0, 1). The left panel of Figure 1 shows the effect of increasing ρ on the

persistence for the two goods: a good with relatively slow price adjustment (λj = 0.95) and a good

with relatively fast price adjustment (λj = 0.5).

The right panel of Figure 1 plots the SAR against λj . The figure compares the model’s impli-

cations for ρ = 0, as calibrated by Kehoe and Midrigan (2007) and ρ = 0.83, the monthly analog to

the CKM calibration.6 The impact of introducing persistence in money growth rates on the SAR

is clear. When ρ = 0, the model predicts that the SAR equals λj , so the two lie on the 45 degree

line in the figure. On the other hand, when ρ > 0, the model predicts a much flatter line. Thus, a

high persistence of the money growth rates increases the persistence of LOP deviations, regardless

of the frequency of price adjustment, but the quantitative impact is greatest when the frequency

of price adjustment is highest.

To see the intuition behind the persistent dynamics it is instructive to express the current LOP

deviation as a function of its lagged self and the change in the nominal exchange rate:

q̂t(j, l, l∗) = λj q̂t−1(j, l, l∗) + θj∆Ŝt, (40)

where ∆Ŝt = µ̂t − µ̂∗t from (19). When ρ = 0 as in Kehoe and Midrigan (2007), ∆Ŝt is an i.i.d

shock and the good-level real exchange rate follows AR(1) with persistence parameter, λj . When

6The CKM estimate of the autoregressive coefficient is 0.68 using quarterly U.S. data for M1 growth. We trans-

form this quarterly persistence of M1 growth into the monthly persistence by solving Cov(M̂t − M̂t−3, M̂t−3 −

M̂t−6)/V ar(M̂t − ˆMt−3) = 0.68 for ρ. We obtained the resulting monthly persistence of M1 money growth of 0.83.
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international money growth differential is positively autocorrelated (ρ > 0) so is the change in the

nominal exchange rate, which contributes to increased persistence in the real exchange rate.

3.1.2 Volatility

Throughout, real exchange rate volatility will be measured relative to the standard deviation of

the change in the nominal exchange rate: σj = std(qt(j, l, l∗))/std(∆St). When ρ = 0, the model

predicts the normalized standard deviation to be σj = σ1(λj) = λj/
√

1− λ2
j and a good with larger

λj will exhibit more variability. When ρ > 0, the normalized standard deviation is predicted to be

of the form σj = σ2(λj , ρ, β) and may be obtained using the variance formula of an AR(2) process

along with std(∆St) = std(ηt)/
√

1− ρ2. Importantly, the volatility function depends not just on

λj , but also on ρ and β.

An implication of this is that increased persistence in money growth, while helpful in resolving

the persistence puzzle, may actually make the volatility puzzle worse because σj = σ2(λj , ρ, β)

turns out not to be monotonic in ρ. Even more disturbing is that the shape of the relationship with

ρ depends on the frequency of price adjustment, which we know differs across goods. The practical

thrust of this is: changes in money growth persistence will have differential impacts across goods.

The left panel of Figure 2 plots the normalized standard deviations σj = σ2(λj , ρ, β) against

ρ.7 For a good with relatively infrequent price changes (λj = 0.95), volatility of the real exchange

rate rises over most of the range of money growth persistence, before falling sharply as money

growth approaches a random walk. In contrast, for a good with relatively frequent price changes

(λj = 0.5), the volatility of the relative price is declining in the money growth rate throughout. The

right panel of Figure 2 shows the ambiguous impact of introducing a positive ρ on the volatility

from another dimension. The normalized standard deviation is smaller for ρ = 0.83 than for ρ = 0

when price adjustment is fast. When the price adjustment is slow, we have a larger normalized

standard deviation for ρ = 0.83 than for ρ = 0.

3.2 Calvo pricing with infrequent information updating

Let P̂ kH,t(j, l) be the log deviation of P kH,t(j, l) from the steady state. Log-linearizing (28) around

the steady state yields

P̂ kH,t(j, l) = (1− λjβ)
∞∑
h=0

(λjβ)hEt−kM̂t+h, for k = 0, 1, 2, · · · .

7We set the discount factor β to 0.99.
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The law of iterated expectations implies

P̂ kH,t(j, l) = Et−kP̂H,t(j, l).

Here, we use P̂ 0
H,t(j, l) = P̂H,t(j, l) because of the equivalence between (24) and (28) when k = 0.

Consider the weighted average of newly set prices that U.S. firms choose when they adjust prices

in period t; these firms choose Et−kP̂H,t(j, l) according to their information they last updated.

Canadian firms choose Et−kP̂F,t(j, l). As before P̂F,t(j, l) = P̂H,t(j, l). Therefore, P̂ kF,t(j, l) =

P̂ kH,t(j, l) for k > 0, due to the law of iterated expectations.

Defining X̂t(j, l) as the weighted average for the newly set prices for good j in city l of the U.S.,

based upon different information vintages, we obtain

X̂t(j, l) = (1− ωj)
∞∑
k=0

ωkjEt−kP̂H,t(j, l), (41)

which is similar in mathematical formulation to the price index in Mankiw and Reis (2002, p.1300).

Now, using the definition P̂H,t(j, l) = ∆P̂H,t(j, l) + P̂H,t−1(j, l), (41) can be rewritten as

X̂t(j, l) = (1− ωj)P̂H,t(j, l) + ωj(1− ωj)
∞∑
k=0

ωkjEt−k−1∆P̂H,t(j, l)

+ ωj(1− ωj)
∞∑
k=0

ωkjEt−k−1P̂H,t−1(j, l).

The second line of the equation is ωjX̂t−1(j, l) from (41). Hence,

X̂t(j, l) = ωjX̂t−1(j, l) + (1− ωj)P̂H,t(j, l) + ωj(1− ωj)
∞∑
k=0

ωkjEt−k−1∆P̂H,t(j, l).

To render the variable stationary, define x̂t(j, l) = X̂t(j, l)− M̂t. Then,

x̂t(j, l) = ωj x̂t−1(j, l)− ωjµ̂t + (1− ωj)p̂H,t(j, l)

+ωj(1− ωj)
∞∑
k=0

ωkjEt−k−1[∆p̂H,t(j, l) + µ̂t].
(42)

Appendix B shows that we can derive the closed form solution to x̂t(j, l):

x̂t(j, l) = ωj x̂t−1(j, l) + ajµ̂t +
bj

1− ωjρL
µ̂t−1, (43)

where aj = λjβρ−ωj
1−λjβρ , bj = ωjρ(1−λjβ)(1−ωj)

1−λjβρ , and L is the lag operator.

The price index for good j in city l is a Calvo-weighted-average of fixed and reset prices. The

latter being our weighted average of price resets given different vintages of information:

P̂t(j, l) = λjP̂t−1(j, l) + (1− λj)X̂t(j, l).
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Again, normalizing by M̂t, gives

p̂t(j, l) = λj p̂t−1(j, l)− λjµ̂t + (1− λj)x̂t(j, l) (44)

and Canadian versions of these expressions are:

x̂∗t (j, l
∗) = ωj x̂

∗
t−1(j, l∗) + ajµ̂

∗
t +

bj
1− ωjρL

µ̂∗t−1,

p̂∗t (j, l
∗) = λj p̂

∗
t−1(j, l)− λjµ̂∗t + (1− λj)x̂∗t (j, l∗).

The next proposition establishes the rich short-run dynamics of the good-level real exchange

rate emerging from the extended model.

Proposition 2. Under the preference assumption U(c, n) = ln c − χn, the CIA constraints, the

assumption of money growth (31) and (32), along with good-specific Calvo pricing and good-specific

Mankiw-Reis information updating, the good-level real exchange rate between any cities l and l∗

follows an ARMA(4,2) process of the form:

q̂t(j, l, l∗) =
4∑
r=1

φj,r q̂t−r(j, l, l∗) +
2∑
r=0

θj,rηt−r (45)

where

φj,1 = φ̃j,1 + ρ, φ̃j,1 = λj + ωj + ωjρ

φj,2 = φ̃j,2 − φ̃j,1ρ, φ̃j,2 = −[λjωj + (λ+ ωj)ωjρ]

φj,3 = φ̃j,3 − φ̃j,2ρ, φ̃j,3 = λjω
2
j ρ

φj,4 = −φ̃j,3ρ

θj,0 = λj − (1− λj)aj

θj,1 = −λj(ωj + ωjρ) + (1− λj)(ωjρaj − bj)

θj,2 = λjω
2
j ρ.

Proof. See Appendix C.

When ωj = 0 this proposition reduces to Proposition 1.8 Below, we show that both the

persistence and volatility of good-level real exchange rates predicted by the dual stickiness pricing

can be quite high. Moreover, this is true even if the price adjustment is relatively fast, which is

essential in matching the cross-sectional evidence which contains goods with frequent price changes

and, yet, high persistence and variability in their LOP deviations.
8In particular, we obtain φj,1 = λj + ρ, φj,2 = −λjρ, and φj,3 = φj,4 = 0 for the AR parameters and θj,0 = θj and

θj,1 = θj,2 = 0 for the MA parameters.
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3.2.1 Persistence

Appendix C shows that the SAR in this generalized case is given by

αj =
4∑
r=1

φj,r = 1− (1− λj)(1− ωj)(1− ωjρ)(1− ρ).

Clearly, the slower the speed of information updating adjustment is (ωj → 1), the larger the SAR

becomes.

For a general ARMA process without parameter restrictions, it is not conventional to use the

SAR as a measure of persistence, because of the presence of MA terms. However, if our model is

correctly specified, we can show that both the long-run impact of cumulative impulse response of

a unit monetary shock on real exchange rates and the SAR are strictly increasing function of λj ,

ωj , and ρ. Furthermore, using the SAR is also convenient in computation and for the purpose of

making comparison with simpler models introduced in the previous subsection. For these reasons,

we continue to focus on the SAR as an approximate measure of persistence under the assumption

that the process (45) is correctly specified.

The extended model works well in generating the persistence of a good-level real exchange rate.

The left panel of Figure 3 shows the SAR among different ωj ’s. The persistence is increasing in

ωj and is very high regardless of the infrequency of price changes.9 The right panel of Figure 3

plots the persistence against λj . This panel compares cases of two extreme values of ωj . One is the

case in which firms producing good j updates their information every month. (i.e., ωj = 0.) The

other is the case in which firms, on average, update information every 50 months (i.e., ωj = 0.98).

For the former case, the obtained SAR corresponds to the upper straight line in the right panel of

Figure 1 since we set ρ = 0.83 in the computation. In the latter case, the persistence measure is

very close to one whether prices are sticky or flexible.

3.2.2 Volatility

Having improved the potential of the model in accounting for persistence of real exchange rates, we

ask if it helps along the dimension that was more ambiguous in the baseline model, variability. We

calculate the new normalized standard deviation σj = σ3(ωj , λj , ρ, β), using the fact that the good-

level real exchange rates now follow the ARMA(4,2) process according to Proposition 2. The left

panel of Figure 4 plots the normalized standard deviations against ωj . It shows that the volatility

9Even if ωj = 0, q̂t(j, l, l
∗) is already somewhat persistent, because of the AR(1) money growth.
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grows exponentially as ωj increases. The right panel of Figure 4 shows the effect of increasing λj

on the normalized standard deviations under the two extreme cases: ωj = 0 and 0.98. It shows

that real exchange rate volatility becomes substantially greater when the information adjustment is

slower. Thus, the introduction of information stickiness enhances the real exchange rate volatility

to a large extent.

The question we pose next is what lengths of information delays are needed to match key

properties of the micro-data, conditional on the model. The key properties are the persistence and

volatility of good-level real exchange rates along with the frequency of price changes observed for

those same goods.

4 Empirical results

4.1 Data

The retail prices come from the Worldwide Cost of Living Survey compiled by the Economist

Intelligence Unit (EIU). It is an extensive annual survey of international retail prices that was

originally designed to help managers to determine compensation levels of their employees residing

in different cities of the world. The coverage of goods and services is broad enough to overlap

significantly with what appears in a typical urban consumption basket (see Rogers (2007), for more

detail on the comparison between EIU data and the CPI data from national statistical agencies).

A notable advantage of the EIU data is the fact that all the individual good prices are listed in

absolute terms with the survey conducted by a single agency in a consistent manner over time.

Because of this convenient panel data format, a number of recent studies on international price

dynamics have used this data, including Crucini and Telmer (2007), Crucini and Shintani (2008),

Engel and Rogers (2004), Parsley and Wei (2007) and Rogers (2007).

For a limited number of countries, the EIU data contains observations from multiple cities. In

our empirical analysis, we focus on U.S.-Canadian city pairs since the assumption of the common

probability of price adjustment for each good seems to be a reasonable approximation between the

two neighboring countries.10 After removing missing observations to construct a balanced panel for

the period from 1990 to 2005, 3 of the 16 available U.S. cities available in the survey are dropped,

while all 4 Canadian cities remain. This results in a total of 52 unique city pairs. The cities and
10Alternatively, one may use the average of price change frequencies between the two countries, an approach

employed in Kehoe and Midrigan (2007), when data from both countries are available.
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categories of goods included in the analysis are shown in Figure 5 and Table A1, respectively.

For each good j, the log of qt(j, l, l∗) for each year t (= 1, ..., 16) is computed using the price

level in a U.S. city l (= 1, ..., 13) expressed in U.S. dollars (Pt(j, l)), the price level in a Canadian

city l∗ (= 1, ..., 4) expressed in Canadian dollars (P ∗t (j, l∗)), and the spot U.S.–Canadian dollar

exchange rate (St), all from the EIU data. Since the resulting log real exchange rates represent

the log deviations of the price in a Canadian city relative to that of a U.S. city both expressed in

a common currency, a negative value for the pair of Toronto and New York, for example, implies

that the good is more expensive in New York than in Toronto at year t. Figure 6 plots the log of

qt(j, l, l∗), pooling all goods and all city pairs from the end-points of the sample, 1990 and 2005.

Next, for the price stickiness parameter, λj , we utilize the frequency of price changes, fj and

transform it with λj = 1 − fj for good j. Since the EIU data is annual, it is not useful for

constructing estimates of the frequency of price changes. Here we rely on existing studies based on

monthly micro-data from the BLS (Bureau of Labor Statistics). Bils and Klenow (2004) used the

BLS Commodities and Services Substitution Rate Table for 1995-1997 which contains the average

frequencies of price changes of individual goods and services used in construction of the U.S. CPI.

We took the monthly average frequency of price changes, fj , from Table A1 of their paper and

matched them with the 165 goods in the EIU sample. Since we require persistence and frequency

adjustment parameters good-by-good to evaluate the model, we use only these 165 matched pairs

in our analysis. We assume that the frequency of price changes applies to the entire sample period

of 1990-2005 in our EIU data set.11 In addition, we assume a common frequency of price change

between the U.S. and Canadian cities, good-by-good.

Nakamura and Steinsson (2008) revisited Bils and Klenow’s analysis using more detailed and

updated BLS data. Using the CPI Research Database created by the BLS, they re-estimated the

frequencies of price change after removing temporary price changes associated with sales. They

found that the median duration between regular price changes was 8 - 11 months depending on the

treatment of substitutions, considerably higher than the 4.3 months for the median good, found

by Bils and Klenow (2004). In what follows, we also check the impact on our results of using

the Nakamura and Steinsson’s (2008) data on the frequency of price changes from the period of
11In some countries which experienced a structural shift in inflation, an assumption of constant frequency of price

changes over years may not be satisfied. For example, Ahlin and Shintani (2007) use Mexican price data on 44 goods

and report that the average monthly frequency of price changes was 28% in 1994 and as large as 50% in 1995. We

expect that this issue is less serious in our case since both U.S. and Canada had a stable inflation during the period

under consideration.
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1998-2005.

For the nominal exchange rate changes required for the theoretical volatility calculation, we

use monthly changes in the log of the end-of-month U.S.-Canadian dollar spot rates. While both

price stickiness parameter (frequency of price changes) and nominal exchange rates are available

in monthly series, real exchange rates are only observed annually. The small number of time

series observation at the annual frequency is the major limitation of the EIU data. In the next

subsection, we briefly discuss how to reconcile the mixed frequencies of observation in the dynamic

panel estimation and describe the procedure to estimate the time series models.

4.2 Estimation

Table 1 shows how monthly ARMA processes predicted by the model are transformed into the

ones which have non-zero coefficients for multiples of 12 month lags and finite MA terms. The first

row of the table shows the easiest transformation. In Calvo pricing with ρ = 0, the equation (39)

directly implies that

q̂t(j, l, l∗) = λj q̂t−1(j, l, l∗) + λjηt.

By repeated substitutions, we get

q̂t(j, l, l∗) = λ12
j q̂t−12(j, l, l∗) + λjΛj(L)ηt

where Λj(L) =
∑11

r=0 λ
r
jL

r. In this equation, the AR term is the 12th lag (in months) and the

order of the MA term is 11. This ARMA(12,11) is equivalent to an AR(1) sampled annually since

λjΛj(L)ηt and q̂t−12(j, l, l∗) are not correlated.

Such a transformation is not necessarily possible with a general ARMA process including AR(2)

and ARMA(4,2) processes. However, thanks to a special dynamic feature of the theoretical model,

it is possible that we can make the AR parameters non-zero only if the lags are multiples of 12

and the MA parameters finite under our extended models (39) and (45). Appendix D provides the

detailed derivations of these more elaborate transformations.

Previously, l and l∗ were used for the U.S. and Canadian cities, respectively. Here, they are

replaced by a new single index i (= 1, ..., 52) each representing a city pair spanning a national

border. In addition, the sampling frequency for the model was assumed to be monthly. With some

abuse of notation, our new time subscript now represents the time in annual frequency. Namely,

if the true data process is generated for each month t∗ = 1, ..., T ∗, we now only observe the series

annually at the months of t = 12 × t∗ = 1, ..., T (= T ∗/12). With this newly introduced index, we
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define qjit as the log of the real exchange rate for good j between the city pair indexed by i at year

t:

qjit = ln qt(j, l, l∗).

Thus, the former log deviation from the steady state q̂t(j, l, l∗) can be rewritten as qjit − q
j
i , where

qji is the long-run value which the Appendix E shows to equal:

qji = ln q(j, l, l∗) = ln
[1 + κ1−θ(1 + τ(j, l∗))1−θ]

1
1−θ

[1 + κ1−θ(1 + τ(j, l))1−θ]
1

1−θ
.

Intuitively, the relative price of a good in the long-run is higher in the destination market with

the higher shipping cost from the source. Thus if city l∗ is, say, farther from the source of the

good than city l, qji is positive. These heterogeneous long-run deviations justify the presence of

individual effects (the time invariant city pair-specific effect) in the panel estimation.

Based on the annual transformation shown in Table 1, all the dynamics of the real exchange

rate for good j can be written as

qjit =
m∑
r=1

Φj,rq
j
i,t−r + ζji + ujt + vjit,

where ζji is the time invariant unobserved city pair-specific effect which allows long-run price dif-

ference between two cities, ujt is the common time effect which represents the exchange rate shocks

and vjit is a good-specific residual term.

This model format nests all the models under consideration: (i) Calvo pricing with ρ = 0 implies

m = 1; (ii) Calvo pricing with ρ 6= 0 implies m = 2; and (iii) dual stickiness pricing implies m = 4.

For the individual specific effect ζji , we can easily see its relationship to the long-run mean and

the persistence from qji = ζji /(1 − αj) where αj =
∑m

r=1 Φj,r. For the common time effect ujt ,

Calvo pricing with ρ 6= 0 predicts a serial correlation of order one, while dual stickiness pricing

predicts a serial correlation of order three. However, in a short panel asymptotic with finite T , the

common time effects can be treated as unknown parameters to be estimated with time dummies.

In addition, since our main interest is to estimate the persistence expressed in terms of the SAR,

αj , it is convenient to rewrite the model into the augmented Dickey-Fuller (ADF) form. Thus, the

nested model is given by

qjit = αjq
j
i,t−1 +

m−1∑
r=1

γj,r∆q
j
i,t−r + u>j D̃t + ζji + vjit,
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where ∆qji,t−r = qji,t−r − q
j
i,t−r−1, γj,r =

∑m
s=r+1 Φj,s for r = 1, ..., k − 1, uj = (ujm+1, ..., u

j
T )> is a

vector of constants, D̃t is a (T −m)× 1 time dummy vector with one in the t-th position and zero

otherwise.

To estimate this short dynamic panel model, we employ the generalized method of moments

(GMM) estimator in the first differenced form for the purpose of eliminating the individual effect

ζji . We follow Arellano and Bond (1991) in the choice of instruments and initial weighting matrix.

In particular, the moment condition is given by

E

[
qjis

(
∆qjit − αj∆q

j
i,t−1 −

m−1∑
r=1

γj,r∆2qji,t−r − δ
>
j Dt

)]
= 0

for s = 1, ..., t−m−1 and t = m+2, ..., T , where ∆2qji,t−r = ∆qji,t−r−∆qji,t−r−1 δj = (∆ujm+2, ...,∆u
j
T )>

is a vector of constants, Dt is a (T −m− 1)× 1 time dummy vector with one in the t-th position

and zero otherwise. The total number of parameters to be estimated is T − 1 with the number of

moment conditions given by (T −m)(T −m − 1)/2.12 This GMM estimator for αj is consistent

under large N fixed T asymptotics.

4.3 Persistence

In this subsection, we evaluate the Kehoe-Midrigan model and its extension in explaining the

observed persistence of the real exchange rate for each good j. Following the theoretical analysis,

our empirical persistence measure is the SAR αj .

We first revisit the original Kehoe-Midrigan model with an assumption of an i.i.d. money

growth (ρ = 0). In this case, the theory predicts an AR(1) model and thus αj is simply an AR(1)

coefficient. A GMM estimation of αj yields a median of 0.56 using annual U.S.-Canadian city pairs

data.13 In terms of monthly frequency, our value corresponds to 0.561/12 = 0.95, which is slightly

less than 0.98, the median value obtained by Kehoe and Midrigan (2007) based on bilateral real

exchange rates of 66 goods between the U.S. and four European countries, Austria, Belgium, France

and Spain.

The first panel in Figure 7 plots the estimated persistence measure αj against the (annual)

infrequency of the price adjustment λ12
j = (1− fj)12 computed based on fj from Bils and Klenow’s

12For the model to be (over-) identified, at least T = 4 is required for m = 1, T = 6 is required for m = 2, and

T = 9 is required for m = 4. Since T = 16 is available in our sample, the number of over-identifying restrictions is

51, 76, and 90, respectively, for m = 1, 2, and 4.
13This value lies between the medians for OECD city pairs (0.65) and LDC city pairs (0.51) obtained by Crucini

and Shintani (2008) based on the same data source.
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(2004) table. A cross-sectional regression of αj on λ12
j yielded a significantly positive slope coefficient

estimate of 0.30 (with a standard error of 0.08) which is consistent with the theoretical prediction

at least in direction: more price stickiness implies higher persistence. However, 160 out of 165

goods lie above the 45 degree line (αj = λ12
j ) in the scatter plot with the regression slope being

significantly less than unity. If the model performance is evaluated by computing the ratio of the

predicted persistence (on the 45 degree line) to the observed persistence for each good, the model

can explain merely a 6 percent of the total persistence for the median good. This confirms Kehoe

and Midrigan’s claim that a simple model of price stickiness alone is quantitatively insufficient to

reproduce the observed persistence in good-level real exchange rates.

We next consider the effect of introducing serially correlated money growth (ρ = 0.83). On the

whole, the persistence estimate αj remains almost unchanged with a median value of 0.57 based on

the AR(2) model. The regression slope shown in the second panel of Figure 7 is 0.35 and is again

significantly positive. Recall that for a given λj , αj is a monotonically increasing function of ρ (see

the left panel of Figure 1). In annual frequency, the predicted SAR from Table 1 is given by

αj = 1− (1− ρ12)(1− λ12
j ) = λ12

j + ρ12 − λ12
j ρ

12

and the effect of increasing ρ can be seen in the median value of the ratio of prediction and data

provided in the upper panel of Table 2. In terms of the median, the theoretical persistence becomes

the observed persistence when ρ is around 0.95. However, this value is much higher than ρ = 0.83,

the value estimated by CKM. Indeed, when ρ = 0.83 is used, only 31 percent of the persistence

can be explained by the model (the number is provided as the first entry of the lower panel). The

inability of persist money growth to account for the persistence of real exchange rates can be also

seen from the scatter plot. Recall that, from the right panel of Figure 1, increasing ρ shifts the

theoretical line upward with a flatter slope. A similar theoretical prediction line with ρ = 0.83,

expressed in the annual frequency basis, is also drawn in the second panel of Figure 7.14 Compared

to the 45 degree line in the first panel of the same figure (ρ = 0), the predicted line now becomes

flatter but is still much steeper than the regression line. Indeed, about 95 percent of data points

are still above the ρ = 0.83 line. Thus, persistence in money growth helps a bit, but the model with

Calvo pricing remains largely unsuccessful in explaining the persistence with a reasonable choice

of money growth process.

Third, we now look at the role of information delay in explaining αj . To simplify the argument,

14The intercept of the theoretical line is ρ12 = 0.8312 = 0.11.
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here we assume the information delay parameter to be common across all the goods (namely, ωj = ω

for all j). The persistence estimates based on the AR(4) model become somewhat lower with a

median value of 0.51, but still are much higher than the level predicted by the standard Calvo

pricing without information delay (which corresponds to the ω = 0 line shown in the lower panel

of Figure 7). Recall that from the left panel of Figure 3, for a fixed value of λj and ρ(= 0.83), αj is

strictly increasing in ω. This pattern is preserved in the SAR expressed in annual frequency (See

Appendix D.):

αj = 1− (1− ρ12)(1− λ12
j )(1− ω12)(1− (ωρ)12).

Based on this relationship, the median of the ratio of theoretical value to observed value, provided

in the lower panel of Table 2, increases with ω and reaches one at ω = 0.93 which corresponds to

14 months of average duration between information updates. Therefore, at least in terms of the

median, dual stickiness pricing with a reasonable money growth process is capable of replicating

the observed persistence. In the lower panel of Figure 7, the shaded triangle area shows the range

between the line without information delay (ω = 0) and the line with an enormous information

delay (ω = 0.98 which corresponds to the 50 month average duration of information updates). The

regression line is located almost in the middle of the triangle and its slope is 0.56.

Turning to results based on fj from Nakamura and Steinsson’s (2008) data, Figure 8 shows the

scatter plots of the pairs of (αj , λ12
j ) for (i) Calvo pricing with ρ = 0; (ii) Calvo pricing with ρ > 0;

and (iii) dual stickiness pricing, respectively.

For many goods, the removal of sales results in the lower value of fj . Less frequent price

changes increase the value of λ12
j = (1− fj)12, and most of the data points in the scatter plot shift

rightward.15 For all the models, the predicted persistence will be higher for the larger values of λ12
j ,

and thus excluding the sales from frequency of price changes works in favor of Kehoe-Midrigan’s

model prediction about real exchange rate persistence. The proportion of the data points lie below

the theoretical prediction line increased from 3 percent to 16 percent for Calvo pricing with ρ = 0,

and from 5 percent to 24 percent for Calvo pricing with ρ = 0.83. For all the cases, the regression

slopes shown in the scatter plots are again significant and positive, and the regression fit in terms

of the coefficient of determination improves.16 However, because of the rightward shift, more
15Note that αj for each good j for each AR model remains unchanged between Figures 7 and 8. In addition,

because the sample periods differ between the two data sets, this rightward shift may not occur for some goods.
16Regression coefficients are 0.36, 0.31, and 0.43 for each panel, respectively. Coefficients of determination increase

from 8 to 26 percent, 10 to 17 percent, and 12 to 15 percent, respectively.
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data points in the last panel of the figure fall outside the shaded triangle region representing the

theoretical predictions of dual stickiness pricing.

We see improvement in the ratio of predicted to the observed persistence provided in Table 3.

As shown in the first entry of the upper panel of Table 3, even the case with ρ = 0 can account

for 48 percent of the observed persistence, in comparison to 6 percent based on Bils and Klenow’s

fj . The ratio increases as ρ increases, but because of the higher initial ratio, it becomes one at

around ρ = 0.92 a value lower than the previously selected value of ρ = 0.95. This newly selected

ρ, however, is again higher than the CKM’s reference value of ρ = 0.83. Since the ratio or actual

to predicted persistence is 66 percent at ρ = 0.83, there is still a room for the information delay

structure to fill the gap between the theoretical and observed value. The lower panel of Table

3 shows the effect of increasing ω on the prediction ratio based on Nakamura and Steinsson’s

data. The table shows that 100 percent of the persistence can be explained by setting ω = 0.90

which corresponds to 9.5 months of average duration between information updates. This length

of months suggests that the role of information stickiness remains important even when Bils and

Klenow estimates are replaced with Nakamura and Steinsson estimates.

4.4 Volatility

The second puzzle brought up in Kehoe and Midrigan (2007) is the observation of too much volatility

in good-level real exchange rates which is inexplicable by either a simple sticky price model or a

model with pricing complementarities. In this subsection, we evaluate the role of information

stickiness in terms of explaining the observed volatility.

The performance of the model is evaluated by the ratio of the ‘theoretical’ normalized standard

deviation to the ‘observed’ normalized standard deviation. The procedure of computing each stan-

dard deviation is as follows. First, to compute ‘theoretical’ normalized standard deviation, note

that the standard deviation of real exchange rates predicted by the theory has the same implica-

tion to both annually sampled data and monthly sampled data. Therefore, unlike the measure of

persistence that required transformations shown in Table 1, using annual data poses no complica-

tion. For each good, the theoretical normalized standard deviation σj can be directly obtained by

substituting λj = 1− fj into the formula discussed in Section 3.

Second, to compute the ‘observed’ normalized standard deviation, note that using a pooled

sample variance as a volatility measure is not appropriate since it includes the variance component

due to the dispersion of long-run real exchange rate qji among city pairs in our panel data. In
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addition, the theory predicts volatility caused by the nominal exchange rate fluctuation which is

common to all the products, but is not designed to incorporate the idiosyncratic variance component

such as the one due to time-varying city specific shocks. For this reason, we conduct a variance

decomposition based on a standard two-way error components model and focus on the extracted

variance component due to a time specific shock. This decomposition seems to be a reasonable

choice in our study because it is consistent with the idea of using time dummies in the dynamic panel

estimation to incorporate the common time specific shocks in our previous analysis of persistence.

We thus use the observed standard deviation of time specific component normalized by the sample

standard deviation of monthly nominal exchange rate growth.

We start with the results presented in Table 4 based on Bils and Klenow’s data. The upper

panel of the table shows the median of the ratio of the theoretical to observed normalized standard

deviation. The original Kehoe-Midrigan setting with ρ = 0 can explain only 13 percent of the

variation in the data. Thus, the evidence of excess volatility discovered by Kehoe and Midrigan

(2007) is also confirmed in the EIU panel data of the U.S.-Canadian city pairs. Can we explain this

observed volatility with an introduction of serially correlated money growth? Unfortunately, unlike

the persistence, the predicted volatility is not a monotonically increasing function of ρ. Examples

presented in the left panel of Figure 2 show that the volatility decreases monotonically for goods

with small λj = 1− fj and increases only in some range of ρ for goods with a larger λj . As a result

of the combination of the two effects for many goods, none of the median ratios presented in the

upper panel of Table 4 is above one and maximum value is only 15 percent at ρ = 0.52.

In contrast to the effect of ρ, the left panel of Figure 4 shows that the volatility increases

monotonically with ω in dual stickiness pricing for any given values of λj and ρ. The lower panel

of Table 4 presents the ratio of standard deviations based on dual stickiness pricing with various

ω’s when the CKM’s reference value of ρ = 0.83 is used for the money growth process. With an

introduction of the information delay, the volatility can now be fully explained at ω = 0.94 which

implies 17 months of average duration between information updates. As shown in the previous

section, the observed persistence can be reproduced if any value of ρ is allowed without introducing

information stickiness. For the volatility, however, the observation can be replicated only under

dual stickiness pricing. In this sense, the information delay plays an essential role in explaining

volatility.

We now turn to Nakamura and Steinsson’s data with the effect of sales removed from fj . The

median of the ratio of the predicted to observed standard deviation for each pricing is shown in
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Table 5. The performance of the Kehoe-Midrigan model, in terms of explaining volatility, clearly

improves over the results in Table 4 based on Bils and Klenow’s data. Since the removal of sales

results in the lower values of fj , using Nakamura and Steinsson’s data increases the theoretical

volatility level which is increasing in λj = 1−fj . For example, when ρ = 0, the ratio increases from

13 to 23 percent. However, the degree of increased theoretical volatility is still insufficient to fully

explain the observed volatility under the model without information delay. As shown in the upper

panel of Table 5, the maximum ratio is only 43 percent under the model without information delay

at ρ = 0.80. Therefore, the role of sticky information is again crucial in explaining the volatility

of the good-level real exchange rates, even if we use Nakamura and Steinsson’s data. The lower

panel of Table 5 shows that the model with information delay can explain 100 percent of observed

volatility when ω = 0.92 which implies 12 months of average duration between information updates.

In comparison to the result from Bils and Klenow’s data, the reduction of ω reflects the fact that

a larger component in the variance is already explained by the reduction of price change frequency

alone in Nakamura and Steinsson’s data.

4.5 Good-specific information updating

In the previous subsections, we have shown that an introduction of information stickiness into

Calvo pricing can fully explain the median persistence and volatility by searching for the common

information delay, namely ωj = ω for all goods, j. In this subsection, we will briefly evaluate

the obtained values of common information delay by comparing existing empirical macro studies

on sticky information. Then, we relax our assumption of common information delay and consider

good-specific information delays to account for the individual persistence or volatility.

To evaluate common ω estimates, we first compare them with previous studies’ estimates on

information stickiness based on the aggregate inflation. Using the aggregate data on inflation over

1960:Q1 - 2007:Q2, DKT find that information delay, on average, is 7.1 months with 95 percent

confidence intervals between 5.0 and 16.1 months. Knotek (2006) introduces information stickiness

into the fixed menu cost model and finds the average duration between information updates to be

20.4 months over 1983:Q1 - 2005:Q4.17 Thus, all of our common ω estimates (14 and 17 months

from Bils and Klenow’s data and 9.5 and 12 months from Nakamura and Steinsson’s data) are in
17Among many empirical studies on the pure sticky information model, Andrés, López-Salido, and Nelson (2005)

estimate the average information duration to be 20 months and Kahn and Zhu (2006) find that the point estimates

of average duration range between 9 and 23 months.
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line with previous estimates based on aggregate inflation.

So far, our common values of ω was obtained to match the persistence and volatility for the

median good. On the other hand, we can also obtain a good specific ω which matches the individual

persistence or volatility for each good using the following procedure.

First, for each good j(= 1, 2, ..., 165), we obtain good specific information delays from the

persistence using

min
ωj∈[0,1)

[α̂j − α(ωj |λj , ρ)]2,

where α̂j denotes the SAR estimate of the AR(4) model and α(ωj |λj , ρ) is the theoretical SAR given

by 1 − (1 − ρ12)(1 − λ12
j )(1 − ω12

j )(1 − (ωjρ)12) evaluated at ρ = 0.83 from CKM and λj = 1 − fj

from the frequency of price changes calculated by either Bils and Klenow (2004) or Nakamura and

Steinsson (2008).

Second, we obtain good specific information delays from the volatility using

min
ωj∈[0,1)

[σ̂j − σ(ωj |λj , ρ, β)]2,

where σ̂j is the extracted standard deviation component of qjit due to time specific shocks normalized

by the standard deviation of ∆Ŝt, while σ(ωj |λj , ρ, β) is the predicted normalized standard deviation

from the model under dual stickiness pricing.18 We take ρ = 0.83, β = 0.99 and λj = 1− fj from

either Bils and Klenow (2004) or Nakamura and Steinsson (2008).

We now look at the distribution of good-specific average durations of information updates

1/(1 − ωj) based on the frequency of price changes from Bils and Klenow (2004). The upper and

lower panels of Figure 9 show the relative histogram of information delays implied by the persistence

and volatility, respectively.

The two kernel density estimates shown in the same figure, on the whole, suggest similarity

between the two distributions. The median of the durations implied by persistence is 12.9 months

while that of the durations implied by volatility is 16.6 months.19 These values are close to the

average durations under the common ω assumption (14 months from persistence and 17 month

from volatility).
18That is, σ(ωj |λj , ρ, β) is the normalized standard deviation σ3(ωj , λj , ρ, β) evaluated at the fixed values of λj , ρ

and β
19From the distribution implied by persistence after removing outliers, we obtain the standard deviation of 13.6,

the skewness of 2.0, and the kurtosis of 5.7. On the other hand, we obtain the standard deviation of 15.6, the skewness

of 1.5, and the kurtosis of 3.4 from the distribution implied by volatility.

29



With the frequency of price changes from Bils and Klenow (2004), we compute a fraction of

goods in which persistence or volatility can be explained without information stickiness. The

fraction is 11.5 percent from persistence matching and only 6.1 percent from volatility matching.

This computation implies that most goods need to have a positive good specific ωj to fully explain

good-level real exchange rate dynamics.

Next, we turn to Figure 10 which uses Nakamura and Steinsson’s (2008) data on the frequency of

price changes. Once again, the kernel density estimates suggest similarity of the two distributions.

The median duration between information updates implied by persistence is 8.2 months while

that implied by volatility is 11.9 months.20 The fraction of goods that can match persistence or

volatility without information stickiness has increased to 33.3 percent for persistence matching and

21.8 percent from volatility matching, due to the exclusion of sales. However, approximately more

than two-thirds of goods still need to have a positive ωj . Thus, the information stickiness remain

important in explaining persistence and volatility with Nakamura and Steinsson’s (2008) data.

Finally, we ask whether our results are, on the whole, consistent with evidence from micro

studies on prices. No micro studies provide directly comparable distribution of information delay

among goods, but survey results on price reviews done by firms may serve our purpose. Fabiani,

Druant, Hernando, Kwapil, Laudau, Loupias, Martins, Matha, Sabbatini, Stahl, and Stokman

(2005) argue that the frequency of price reviews rather than price changes “could be related to the

arrival of information.” According to Fabiani et. al. (2005), when additional information on the

state of the economy infrequently arrives, it is sensible for firms to review prices infrequently. In

this sense, we can exploit survey results for price reviews.

Blinder, Canetti, Lebow, and Rudd (1998) surveyed U.S. firms about price setting behavior in

the beginning of 1990s and their results for price reviews allow us to assess our distributions of

average arrival of information. They ask firms what the customary interval (e.g., daily, weekly,

monthly, quarterly, and yearly) was between price reviews for their most important product. Table

6 compares our distributions of durations of information updates with Blinder et. al. (1998) survey

results. Overall, our distributions of duration between information updates seem to match the

distribution of price reviews well. In particular, our results are close to their survey results when

the frequency of price changes is taken from Nakamura and Steinsson (2008).
20Descriptive statistics are as follows. From the distribution implied by persistence, we obtain the standard devia-

tion of 10.8, the skewness of 2.3, and the kurtosis of 9.1. From the distribution implied by volatility, the corresponding

statistics are 16.1, 1.9, and 4.7, respectively.
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5 Conclusion

Using highly disaggregated price data from U.S. and Canadian cities, we have confirmed Kehoe

and Midrigan’s main finding that the standard Calvo-type sticky price model fails to explain the

persistence and volatility of good-level real exchange rates. We found that this puzzling but stimu-

lating result remains robust to a change from Bils and Klenow’s data to Nakamura and Steinsson’s

data on the frequency of price changes. The robustness of their finding suggests that the baseline

model is deficient.

We offer a possible solution to this puzzle by extending the Kehoe-Midrigan model such that

only a fraction of firms have the up-to-date information when resetting prices. Due to the infrequent

arrival of information, real exchange rates become more persistent and track the volatile nominal

exchange rate even if price adjustment is relatively fast. Our model can explain both persistence

and volatility within a reasonable range of average duration of information updates.

We have limited our attention to the implications of our model under many simplifying assump-

tions. Therefore, there are numerous promising avenues for future research. For example, what

would happen to the prediction of our model if pricing complementarities are included? What

would be the impact on good-level real exchange rate dynamics if the non-traded inputs in produc-

ing a good are included in the model?21 We believe that answering these questions would help us

further understand the dynamics of price adjustment within and across countries.

A The real exchange rate

From the intertemporal conditions (12) and (13), we obtain
P ∗t+1c

∗
t+1

Pt+1ct+1
St+1 = P ∗t c

∗
t

Ptct
St in each event in

period t+1. Because qt is defined as StP ∗t
Pt

, it immediately follows that qt+1
c∗t+1

ct+1
= qt

c∗t
ct

= qt−1
c∗t−1

ct−1
=

· · · = q0
c∗0
c0

= κ.

B The closed form solution to x̂t(j, l)

To derive the closed form solution to x̂t(j, l), we use the closed form solution to p̂H,t(j, l), given µ̂t

follows AR(1). It has been already derived from (35) under an AR µ̂t:

p̂H,t(j, l) =
[

λjβρ

1− λjβρ

]
µ̂t,

21See Crucini, Telmer, and Zachariadis (2005) for this line of research.
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which implies

Et−k−1[∆p̂H,t(j, l)] =
[

λjβρ

1− λjβρ

]
Et−k−1(µ̂t − µ̂t−1)

=
[

λjβρ

1− λjβρ

]
(ρk+1µ̂t−k−1 − ρkµ̂t−k−1).

Using this result, we can express x̂t(j, l) as x̂t−1(j, l) and {µ̂t−k}∞k=0:

x̂t(j, l) = ωj x̂t−1(j, l)− ωjµt + (1− ωj)
[

λjβρ

1− λjβρ

]
µ̂t

+ ωj(1− ωj)
∞∑
k=0

ωkj

{[
λjβρ

1− λjβρ

]
(ρk+1µ̂t−k−1 − ρkµ̂t−k−1) + ρk+1µ̂t−k−1

}
.

Using a lag operator L, we can obtain

x̂t(j, l) = ωj x̂t−1(j, l)− ωjµ̂t + (1− ωj)
λjβρ

1− λjβρ
µ̂t

+ ωj(1− ωj)
∞∑
k=0

ωkj ρ
kLk

{[
λjβρ

1− λjβρ

]
[ρ− 1] + ρ

}
µ̂t−1.

Using
∑∞

k=0 ω
k
j ρ

kLk = (1− ωjρL)−1 and arranging terms yields the closed form solution to x̂t(j, l)

given by (43).

C The proof of proposition 2

To prove Proposition 2, we use the first order difference equation for p̂t(j, l) and µ̂t and an

ARMA(1,∞) structure for x̂t(j, l). We have

p̂t(j, l) = λj p̂t−1(j, l)− λjµ̂t + (1− λj)x̂t(j, l)

µ̂t = ρµ̂t−1 + εt

x̂t(j, l) = ωj x̂t−1(j, l) + ajµ̂t +
bj

1− ωjρL
µ̂t−1

from (44), (31), and (43), respectively. We can rewrite the first and the third equations as follows:

p̂t(j, l) = − λj
1− λjL

µ̂t +
1− λj

1− λjL
x̂t(j, l)

x̂t(j, l) =
aj

1− ωjL
µ̂t +

bj
(1− ωjL)(1− ωjρL)

µ̂t−1.

We eliminate x̂t(j, l) from these equations to get

(1− λjL)(1− ωjL)(1− ωjρL)p̂t(j, l) =(1− λj)aj(1− ωjρL)µ̂t + (1− λj)bjµ̂t−1

− λj(1− ωjL)(1− ωjρL)µ̂t.
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Arranging terms of the right hand side of the equation yields

(1− λjL)(1− ωjL)(1− ωjρL)p̂t(j, l) =− [λj − (1− λj)aj ] µ̂t

+ [λj(ωj + ωjρ)− (1− λj)(ωjρaj − bj)]µ̂t−1

− λjω2
j ρµ̂t−2.

Using the definition of θj,0, θj,1 and θj,2 defined in Proposition 2, we get

(1− λjL)(1− ωjL)(1− ωjρL)p̂t(j, l) = −θj,0µ̂t − θj,1µ̂t−1 − θj,2µ̂t−2.

The left hand of the equation can be extended so that

(1− φ̃j,1L− φ̃j,2L2 − φ̃j,3L3)p̂t(j, l) = −θj,0µ̂t − θj,1µ̂t−1 − θj,2µ̂t−2.

Since the money growth rate follows an AR(1), µ̂t = (1− ρL)−1εt. Then,

(1− ρL)(1− φ̃j,1L− φ̃j,2L2 − φ̃j,3L3)p̂t(j, l) = −θj,0εt − θj,1εt−1 − θj,2εt−2.

Arranging terms the left hand of the equation gives φj,1, φj,2, φj,3, and φj,4:

p̂t(j, l) =
4∑
r=1

φj,rp̂t(j, l)−
2∑
r=0

θj,rεt−r.

Analogously, we can derive the price index for good j of city l∗:

p̂∗t (j, l
∗) =

4∑
r=1

φj,rp̂
∗
t (j, l

∗)−
2∑
r=0

θj,rε
∗
t−r.

Because q̂t(j, l, l∗) = p̂∗t (j, l
∗)− p̂t(j, l), we obtain (45).

Finally, note that the coefficient of p̂t(j, l) is

(1− ρL)(1− φ̃j,1L− φ̃j,2L2 − φ̃j,3L3) = (1− ρL)(1− λjL)(1− ωjL)(1− ωjρL).

It implies that the SAR
∑4

r=1 φj,r is equal to 1− (1− ρ)(1−λj)(1−ωj)(1−ωjρ). Because the AR

coefficients are the same between the same type of good j, it proves Proposition 2.

D The Detailed Derivation of Transformation from Monthly to

Annual Specification

This appendix shows how we transform a monthly specification into the one which has non-zero AR

coefficients for multiples of 12 month lags and finite MA terms with the remaining AR coefficients
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equal to zero. Table 1 summarizes the obtained results before and after transformations. The

transformations lead us to estimate the model via the annual data.

We have already shown the transformation results of Calvo pricing with ρ = 0 in the main text.

In what follows, we will show the derivation of Calvo pricing with ρ > 0 and dual stickiness pricing.

Calvo pricing (ρ > 0) First, we can rewrite the first order difference equation (40) as

q̂t(j, l, l∗) = λ12
j q̂t−1(j, l, l∗) + θjΛj(L)Ŝt =

θjΛj(L)
1− λ12

j L
12

∆Ŝt, (A1)

Second, since ∆Ŝt = µ̂t − µ̂∗t , it immediately follows that

∆Ŝt = ρ∆Ŝt−1 + ηt =
R(L)

1− ρ12L12
ηt, (A2)

where R(L) =
∑11

r=0 ρ
rLr. Substituting (A2) into (A1) yields:

q̂t(j, l, l∗) = (λ12
j + ρ12)q̂t−12(j, l, l∗)− λ12

j ρ
12q̂t−24(j, l, l∗) + θjΛj(L)R(L)ηt, (A3)

which produces an ARMA(24,22).22 The AR parameters are non-zero only if the lags are multiples

of 12. Moreover, the length of the MA terms is now finite and of order 22 in this specific ARMA

process. Intuitively, this transformation is made possible because q̂t(j, l, l∗) is the first order dif-

ference equation and the driving force ∆Ŝt follows an AR(1) process. Remarkably, this monthly

ARMA(24,22) becomes ARMA(2,1) in terms of annually sampled data.

Dual stickiness pricing A similar transformation is possible in dual stickiness pricing. The

next proposition summarizes the transformation result.

Proposition A1. In dual stickiness pricing with ρ, λj, and ωj ∈ (0, 1), the ARMA(4,2) process

characterized by (45) has an equivalent expression of the following ARMA(48,46) process:

q̂t(j, l, l∗) =
4∑
r=1

Φj,rq̂t−12r(j, l, l∗) + Θj(L)ηt, (A4)

22It is because both Λj(L) and R(L) have the power of L of 11 in maximum.
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where

Φj,1 = Φ̃j,1 + ρ12, Φ̃j,1 = λ12
j + ω12

j + (ωjρ)12

Φj,2 = Φ̃j,2 − Φ̃j,1ρ
12, Φ̃j,2 = −[λ12

j ω
12
j + (λ12

j + ω12
j )ω12

j ρ
12]

Φj,3 = Φ̃j,3 − Φ̃j,2ρ
12, Φ̃j,3 = λ12

j ω
24
j ρ

12

Φj,4 = −Φ̃j,3ρ
12

Θj(L) =

{
(1− ω12

j L
12)(1− (ω12

j ρ)12L12)λjΛj(L)R(L)

−(1− λj)Λj(L)Ωj(L)R(L)
[
(1− (ωjρ)12L12)aj + bjL(1 + ΩR

j (L))
]}

Ωj(L) =
11∑
r=0

ωrjL
r, ΩR

j (L) =
11∑
r=1

(ωjρ)rLr.

Proof. To consider the transformation under dual stickiness pricing, note that (43) can be rewritten

as

x̂t(j, l) = ωj x̂t−1(j, l) + ajµ̂t +
bjL

1− ωjρL
µ̂t,

using a lag operator L. This equation has an infinite MA term because the third term of the right

hand side has (1− ωjρL)−1µ̂t. We first work on this term.

The infinite MA form (1− ωjρL)−1µ̂t is

(1− ωjρL)−1µ̂t = µ̂t +
11∑
r=1

(ωjρ)rµ̂t−r

+(ωjρ)12µ̂t−12 + (ωjρ)12
11∑
r=1

(ωjρ)rµ̂t−r−12

+(ωjρ)24µ̂t−24 + (ωjρ)24
11∑
r=1

(ωjρ)rµ̂t−r−24 + · · · .

Collecting terms by columns yields

(1− ωjρL)−1µ̂t = (1 + (ωjρ)12L12 + (ωjρ)24L24 + · · · )µ̂t

+(1 + (ωjρ)12L12 + (ωjρ)24L24 + · · · )
11∑
r=1

(ωjρ)rµ̂t−r

=
1

1− (ωjρ)12L12
µ̂t +

1
1− (ωjρ)12L12

11∑
r=1

(ωjρ)rLrµ̂t

=
1 + ΩR

j (L)
1− (ωjρ)12L12

µ̂t,

where ΩR
j (L) =

∑11
r=1(ωjρ)rLr.
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Using this result, we obtain the first order difference equation for x̂t(j, l):

x̂t(j, l) = ωj x̂t−1(j, l) +

[
aj +

bjL(1 + ΩR
j (L))

1− (ωjρ)12L12

]
µ̂t.

Equivalently, by repeated substitutions,

x̂t(j, l) = ω12
j x̂t−12(j, l) +

[
aj +

bjL(1 + ΩR
j (L))

1− (ωjρ)12L12

]
Ωj(L)µ̂t, (A5)

where Ωj(L) =
∑11

r=0 ω
r
jL

r.

Similarly, the equation for the good j price index is the first order difference equation given by

(44). It implies

p̂t(j, l) = λ12
j p̂t−12(j, l)− λjΛj(L)µ̂t + (1− λj)Λj(L)x̂t(j, l). (A6)

Substituting (A5) into (A6) yields

p̂t(j, l) = − λjΛj(L)
1− λ12

j L
12
µ̂t

+
(1− λj)Λj(L)Ωj(L)

[
(1− (ωjρ)12L12)aj + bjL(1 + ΩR

j (L))
]

(1− λ12
j L

12)(1− ω12
j L

12)(1− (ωjρ)12L12)
µ̂t.

(A7)

Analogously, we can obtain a similar equation for p̂∗t (j, l
∗). Then, noting that q̂t(j, l, l∗) = p̂∗t (j, l

∗)−

p̂t(j, l) and ∆Ŝt = µ̂t − µ̂∗t , we can obtain the following equation for the good-level real exchange

rate:

q̂t(j, l, l∗) =
λjΛj(L)

1− λ12
j L

12
∆Ŝt

−
(1− λj)Λj(L)Ωj(L)

[
(1− (ωjρ)12L12)aj + bjL(1 + ΩR

j (L))
]

(1− λ12
j L

12)(1− ω12
j L

12)(1− (ωjρ)12L12)
∆Ŝt

Arranging the terms and using ∆Ŝt = (1− ρ12L12)−1R(L)ηt, we obtain

(1− λ12
j L

12)(1− ω12
j L

12)(1− (ωjρ)12L12)q̂t(j, l, l∗)

=

{
(1− ω12L12)(1− (ωjρ)12L12)λjΛj(L)R(L)

− (1− λj)Λj(L)Ωj(L)R(L)
[
(1− (ωjρ)12L12)aj + bjL(1 + ΩR

j (L))
]} ηt

1− ρ12L12
.

The terms inside the curly bracket gives Θj(L). Moreover, the first line of the terms has non-zero

coefficient for L46, because (1 − ω12L12)(1 − (ωjρ)12L12) have a non-zero coefficient for L24 and
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Λj(L)R(L) have a non-zero coefficient for L22. Since the second line of the terms inside the curly

brackets have L45, the maximum power for L is 46.

By multiplying both sides of the equation by (1− ρ12L12) we obtain from (A2) to get

(1− ρ12L12)(1− Φ̃j,1L
12 − Φ̃j,2L

24 − Φ̃j,3L
36)q̂t(j, l, l∗) = Θj(L)ηt,

which gives us Φj,1, Φj,2, Φj,3 and Φj,4.

The implications of Proposition A1 are as follows. First, the number of AR parameters are

limited to four and these four parameters are the coefficients on lags of 12, 24, 36, and 48 months.

Thus, the autoregressive part of the model has a form of autoregression on the past values of the

real exchange rates at annual frequencies. Second, if the AR part has the restriction described

above and if the maximum order of MA coefficients is 46, dual stickiness pricing with ρ, λj , and

ωj ∈ (0, 1) can be written only with this representation. Third, this ARMA(48,46) process becomes

ARMA(4,3) in terms of annually sampled data. Finally, under the representation, we can also show

that the SAR is given by

αj =
4∑
r=1

Φj,r = 1− (1− ρ12)(1− λ12
j )(1− ω12

j )(1− (ωjρ)12), (A8)

which is increasing in λj , ωj and ρ.

E The long-run value of a good-level real exchange rate

This appendix shows the long-run value of qt(j, l, l∗). In what follows, we use variables without

time subscript to denote the steady state value.

Consider the steady state value of the price of good j in city l. In the steady state, U.S. firms

set prices such that

PH(j, l) =
θ

θ − 1
W = χ

θ

θ − 1
M.

Here, we used (16). Canadian firms choose prices such that

PF (j, l) =
θ

θ − 1
(1 + τ(j, l))SW ∗ = χ

θ

θ − 1
κ(1 + τ(j, l))M.

because of (17) and (19). Therefore, the price of good j in city l is

P (j, l) =
χ

2
θ

θ − 1
[1 + κ1−θ(1 + τ(j, l))1−θ]

1
1−θM. (A9)
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By similar argument, we can derive P ∗(j, l∗) as follows:

P ∗(j, l∗) =
χ

2
θ

θ − 1
[κ−(1−θ) + (1 + τ(j, l))1−θ]

1
1−θM∗. (A10)

Given the good-level real exchange rate for good j of a city pair between l and l∗ is given by

q(j, l, l∗) = SP (j, l)/P (j, l∗), the equations (19), (A9), and (A10) imply

q(j, l, l∗) =
[1 + κ1−θ(1 + τ(j, l∗))1−θ]

1
1−θ

[1 + κ1−θ(1 + τ(j, l))1−θ]
1

1−θ
. (A11)

Thus, the long-run value of a good-level of real exchange rate depends on the city pair.
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Figure 1: Persistence without information delay: function of money growth parameter(ρ) and Calvo

parameter (λj)
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Figure 2: Volatility without information delay: function of money growth parameter(ρ) and Calvo

parameter(λj)
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Figure 3: Persistence with information delay: function of information stickiness parameter(ωj) and

Calvo parameter(λj)
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Figure 4: Volatility with information delay: function of information stickiness parameter(ωj) and

Calvo parameter(λj)

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

ω
j

N
or

m
al

iz
ed

 s
td

Volatility of ARMA(4,2) process

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

λ
j

N
or

m
al

iz
ed

 s
td

Volatility of ARMA(4,2) process

λ
j
 = 0.95 & ρ = 0.83

λ
j
 = 0.5 & ρ = 0.83

ω
j
 = 0.98 & ρ = 0.83

ω
j
 = 0 & ρ = 0.83

NOTES: The discount factor β is 0.99.

42



F
ig

ur
e

5:
T

he
cr

os
s-

bo
rd

er
ci

ty
pa

ir
s

in
th

e
U

.S
.

an
d

C
an

ad
a

43



Figure 6: Empirical distribution of LOP deviations in 1990 and 2005
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Figure 9: Empirical distribution of good-specific information delays 1/(1 − ωj): Bils and Klenow

(2004)
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NOTES: The upper panel shows the relative histogram of average information delay 1/(1− ωj) where ωj ∈ [0, 1) for

each good j is obtained by minimizing the distance between the observed SAR and theoretical prediction from dual

stickiness pricing using λj = 1−fj from Bils and Klenow (2004) and ρ = 0.83. The smoothed lines are kernel density

estimates. The lower panel shows the distribution when each ωj is obtained by minimizing the distance between the

observed volatility and theoretical prediction using λj = 1− fj , ρ = 0.83 and β = 0.99.
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Figure 10: Empirical distribution of good-specific information delays 1/(1 − ωj): Nakamura and

Steinsson (2008)
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NOTES: See the notes of Figure 9. Nakamura and Steinsson’s (2008) frequency of price changes, in stead of Bils and

Klenow’s (2004), is used for λj = 1− fj in the computation of the theoretical value.
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Table 1: Summary of transformations from monthly to annual specification

Monthly specification Annual specification

Calvo (ρ=0) q̂t(j, l, l∗) = λj q̂t−1(j, l, l∗)− λjηt q̂t(j, l, l∗) = λ12
j q̂t−12(j, l, l∗)− λjΛj(L)ηt

Calvo (ρ > 0) q̂t(j, l, l∗) = (λj + ρ)q̂t−1(j, l, l∗) q̂t(j, l, l∗) = (λ12
j + ρ12)q̂t−12(j, l, l∗)

−λjρq̂t−2(j, l, l∗)− θjηt −λ12
j ρ

12q̂t−24(j, l, l∗)− λjΛj(L)R(L)ηt

Dual stickiness q̂t(j, l, l∗) =
∑4

r=1 φj,r q̂t−r(j, l, l∗) q̂t(j, l, l∗) =
∑4

r=1 Φj,r q̂t−12r(j, l, l∗)

+
∑2

r=0 θj,rηt−r +Θj(L)ηt

NOTES: The left panel shows the original monthly ARMA processes which are in the main text. The right panel

shows corresponding conversions such that autoregressive coefficients are non-zero only if the lags are multiples of

12 and that moving average terms are finite. These conversions allow us to estimate the original monthly ARMA

process with annually sampled data. The autoregressive parameters Φj,r and moving average polynomials, Λj(L),

R(L) and Θj(L) are given in Appendix D.

Table 2: Proportions of explained persistence of good-level real exchange rates: Bils and Klenow

(2004)

Calvo pricing with various ρ

ρ 0 0.3 0.5 0.7 0.9 0.95 0.98 0.946

Theory/Data 0.059 0.058 0.058 0.088 0.634 1.043 1.425 1.000

Dual stickiness pricing with ρ = 0.83

ω 0 0.3 0.5 0.7 0.9 0.95 0.98 0.930

Theory/Data 0.306 0.323 0.323 0.350 0.792 1.209 1.529 1.000

NOTES: Numbers are median ratios of the theoretical persistence, predicted by Bils and Klenow (2004), to observed

persistence measured by SAR estimated from real exchange rate data. Theoretical persistence for the upper panel is

the SAR for various ρ when Calvo pricing is used. Theoretical persistence for the lower panel is the SAR for various

common ω with ρ = 0.83 when dual stickiness pricing is used. Median SAR estimates for AR(1), AR(2) and AR(4)

models are 0.563, 0.568, and 0.508, respectively. The last column of each panel shows the value of ρ and ω, giving

the median ratio closest to one.
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Table 3: Proportions of explained persistence of good-level real exchange rates: Nakamura and

Steinsson (2008)

Calvo pricing with various ρ

ρ 0 0.3 0.5 0.7 0.9 0.95 0.98 0.923

Theory/Data 0.484 0.505 0.506 0.549 0.922 1.226 1.522 1.000

Dual stickiness pricing with ρ = 0.83

ω 0 0.3 0.5 0.7 0.9 0.95 0.98 0.895

Theory/Data 0.664 0.659 0.660 0.681 1.015 1.329 1.619 1.000

NOTES: See the notes of Table 2. Nakamura and Steinsson’s (2008) data, instead of Bils and Klenow’s (2004), is

used for the computation of the theoretical value.

Table 4: Proportions of explained volatility of good-level real exchange rates: Bils and Klenow

(2004)

Calvo pricing with various ρ

ρ 0 0.3 0.5 0.7 0.9 0.95 0.98 0.521

Theory/Data 0.130 0.143 0.153 0.148 0.096 0.064 0.036 0.153

Dual stickiness pricing with ρ = 0.83

ω 0 0.3 0.5 0.7 0.9 0.95 0.98 0.940

Theory/Data 0.125 0.149 0.181 0.276 0.691 1.129 1.950 1.000

NOTES: Numbers are median ratios of the theoretical volatility, predicted by Bils and Klenow (2004), to observed

volatility measured by normalized standard deviation of real exchange rate data. Theoretical volatility for the upper

panel is the normalized standard deviation for various ρ when Calvo pricing is used. Theoretical volatility for the

lower panel is the normalized standard deviation for various common ω with ρ = 0.83 when dual stickiness pricing is

used. The normalized sample standard deviation of real exchange rate is the extracted standard deviation component

due to time specific shocks in the two-way error component model. The last column of each panel shows the value of

ρ and ω, giving the median ratio closest to one.
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Table 5: Proportions of explained volatility of good-level real exchange rates: Nakamura and

Steinsson (2008)

Calvo pricing with various ρ

ρ 0 0.3 0.5 0.7 0.9 0.95 0.99 0.801

Theory/Data 0.234 0.298 0.351 0.403 0.398 0.312 0.212 0.426

Dual stickiness pricing with ρ = 0.83

ω 0 0.3 0.5 0.7 0.9 0.95 0.98 0.916

Theory/Data 0.423 0.449 0.478 0.562 0.882 1.311 2.082 1.000

NOTES: See the notes of Table 4. Nakamura and Steinsson’s (2008) data, instead of Bils and Klenow’s (2004), is

used for the computation of the theoretical value.

Table 6: Intervals between information update

one month 1.01-5.99 6-11.99 12 months

or less months months or above

Blinder et. al.’s (1998)

survey data 25.6 13.2 16.5 44.5

Bils and Klenow Persistence 11.5 8.5 26.7 53.3

Volatility 6.1 4.2 18.2 71.5

Nakamura Persistence 33.3 12.7 18.2 35.8

and Steinsson Volatility 21.8 13.9 14.5 49.7

NOTES: The numbers in the first row represent the distribution, in percentages, of the frequency of price reviews

reported in Blinder, Canetti, Lebow, and Rudd (1998, Table 4.7 in p. 90). The second and third rows show the

distribution of information delay implied by the observed persistence and volatility of real exchange rates based on

Bils and Klenow’s (2004) data on the frequency of price changes. The fourth and fifth rows show the distribution of

information delay when Nakamura and Steinsson’s (2008) data on the frequency of regular price changes is used.
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Table A1: Frequency of price changes and information updates by category

Price Information Price Information

ELI Category name Bils & implied by Nakamura & implied by # of

Klenow Per. Vol. Steinsson Per. Vol. goods

FA Cereals and cereals products 26.5 11.1 4.9 11.5 100.0 6.9 7

FB Bakery products 25.7 5.5 4.4 9.8 8.7 6.8 1

FC Beef and veal 47.2 12.2 4.8 25.5 13.8 5.5 8

FD Pork 47.9 10.2 3.8 23.2 12.3 4.4 6

FF Poultry 39.4 53.0 2.7 16.6 53.6 3.1 2

FG Fish and seafood 42.4 8.7 10.6 20.4 9.7 15.2 1

FH Eggs 61.8 7.5 6.5 47.6 7.5 6.8 1

FJ Dairy and related products 33.7 6.7 4.4 24.9 7.2 5.3 4

FK Fresh fruits 36.4 7.5 5.6 16.6 17.3 6.9 8

FL Fresh vegetables 62.4 24.4 3.4 40.8 25.6 3.6 6

FM Processed fruits and vegetables 24.9 5.2 4.1 10.5 7.7 6.0 6

FN Juices and nonalcoholic drinks 35.6 6.1 2.4 13.1 8.2 2.9 4

FP Beverage incl. coffee and tea 21.1 8.8 7.3 8.9 18.1 13.2 11

FR Sugar and sweets 22.9 4.8 7.0 9.9 7.1 12.7 2

FS Fats and oils 29.5 14.5 6.1 18.1 16.0 6.7 8

FV Food away from home 9.0 3.6 12.9 5.0 5.9 88.5 3

FW Alcoholic beverages at home 19.3 6.1 6.8 10.6 7.5 10.0 7

FX Alcoholic beverages away from home 6.4 2.4 14.1 5.0 3.0 25.1 1

HB Lodging away from home 38.1 11.2 4.9 41.7 11.2 4.8 2

HF Gas and electricity 43.4 3.6 5.3 38.1 3.6 5.4 1

HK Appliances 19.0 2.7 3.6 3.6 15.0 25.6 2

HL Other equipment and furnishings 16.1 10.2 6.6 2.8 100.0 100.0 1

HN Housekeeping supplies 19.2 9.1 3.2 9.4 60.0 5.7 8

HP Household operations 6.5 6.7 38.6 4.3 10.8 100.0 1

AA Men’s apparel 26.0 3.1 7.5 4.5 11.3 100.0 5

AB Boy’s apparel 25.9 2.4 11.5 4.3 6.9 100.0 1

AC Women’s apparel 45.0 6.3 6.8 2.5 100.0 100.0 6

AE Footwear 28.0 4.8 7.1 3.5 60.0 100.0 2

AF Infants’ and toddlers’ apparel 36.3 7.6 7.8 3.5 100.0 100.0 2

TA New and used motor vehicles 39.1 7.5 5.7 31.3 7.6 6.0 7

TB Motor fuel 78.9 11.3 6.3 88.6 11.3 6.2 1

TD Motor vehicle maintenance and repair 11.6 6.7 6.1 10.7 7.1 6.4 2

TE Motor vehicle insurance 15.5 3.2 11.8 8.2 4.6 27.7 1

TG Public transportation 5.0 4.3 19.8 4.4 4.9 31.2 3

MB Nonprescription drugs and medical supplies 13.7 5.8 14.8 7.9 8.7 42.6 2

RA Video and audio 22.0 10.3 10.2 9.4 55.7 24.8 2

RD Photography 8.6 9.6 16.2 8.8 12.0 30.5 2

RF Recreation services 8.8 6.7 13.3 9.0 6.6 12.9 1

RG Recreational reading materials 12.4 15.1 34.5 5.4 100.0 100.0 3

GA Tobacco and smoking products 21.6 4.3 1.3 23.2 4.3 1.3 4

GB Personal care products 11.1 4.7 10.8 3.9 14.7 100.0 10

GC Personal care services 4.1 78.7 100.0 3.1 100.0 100.0 2

GD Miscellaneous personal services 5.1 13.8 100.0 3.0 100.0 100.0 8

NOTES: ELI in the first column stands for the entry level item in the CPI. EIU price series for good and service used in

the analysis are matched to BLS’s ELI codes. The third column shows the median value of average monthly frequencies of

price changes from Bils and Klenow (2004), among the goods included in each category. The fourth and fifth columns show

the median value of the estimated average monthly frequencies of information updates implied by the persistence (Per.) and

volatility (Vol.) of good-level real exchange rates, when Bils and Klenow (2004) is used to compute the theoretical prediction.

The sixth column is the median of the frequencies of regular price changes from Nakamura and Steinsson (2008). The seventh

and eighth columns show the median of frequencies of information updates when Nakamura and Steinsson’s (2008) data is used.

The last column shows the total numbers of goods and services included in each category of ELI codes.
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