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I. Introduction

SINCE THE ISSUANCE OF the first Government National Mortgage Association
(GNMA) mortgage-backed pass-through security in February 1970, the total
amount of GNMAs issued has grown to over $105 billion. In terms of their trading
volume, GNMA securities are the most actively-traded class of long-term fixed-
rate instruments. However, this gross volume statistic masks the fact that
GNMASs are not homogeneous securities. They differ by coupon interest rate and
remaining term to maturity. There is also a widely-held belief [12] and some
evidence [7] that GNMAs differ according to their expected prepayment rates.

The bulk of the trading volume in GNMAs is comprised of newly-issued
securities. New securities are generally issued at the Federal Housing Adminis-
tration (FHA) maximum interest rate and have terms to maturity of 30 years.
While most GNMA trading is comprised of new issues, the bulk of the outstanding
securities is comprised of “old” securities whose coupon rates may differ from the
current FHA ceiling and whose remaining terms to maturity are less than 30
years. This raises a pricing problem for GNMA security dealers, portfolio man-
agers, financial institutions that hold large portfolios of GNMA securities, and
other potential GNMA investors. Up-to-date market price quotes are available
for new issues, but quotes for “old” ones are not so readily available. Thus,
potential traders confront the problem of pricing these infrequently traded
securities.

The problem of pricing GNMA securities was initially addressed by Curley and
Guttentag [5]. They presented a model for the pricing of GNMAs that was an
imaginative and important extension of the then widely-used average life proce-
dure. The particular innovation of their model was to incorporate estimates of
the prepayment probabilities to determine expected future cash flows. Through
simulation and sensitivity analysis, Curley and Guttentag (hereafter C & G)
compared prices generated by their model with those generated by the traditional
average life procedure.

In his discussion of the C & G paper, Brealey [1] encouraged the authors to
extend their model to incorporate uncertainty and to value explicitly the call
options attached to the underlying mortgage loans. In a previous paper [6], we
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took those additional steps by developing a pricing model for GNMA securities
based on the general model for pricing interest contingent claims developed by
Brennan and Schwartz [2] and Cox, Ingersoll, and Ross [3].

Still unanswered, however, is the question of whether there is an important
difference in the prices generated by the alternative models. This paper is an
attempt to fill that void. Proceeding in a fashion similar to C & G, we use
simulation and sensitivity analysis to compare prices generated by the contingent
claims model with prices generated by a variation of the C & G method and with
those generated by the average life procedure. The rationale for these compari-
sons is that if there is not much difference in the prices generated by the
alternative models, traders can safely use the simplest model for most purposes.
On the other hand, if the prices generated by the models differ significantly in
some or most circumstances, traders may wish to consider the more complex and
(potentially) more refined models.

In Section II of the paper we briefly describe the GNMA security and in
Section III we describe the alternative models for pricing GNMA securities. In
Section IV we compare the prices generated by the three models under different
assumptions about the economic environment. The last section contains a con-
clusion.

II. Characteristics of GNMA Mortgage-Backed Pass-Through Securities

GNMA mortgage-backed pass-through securities are issued by FHA-approved
mortgages. GNMA requires that all of the individual loans which back a security
have the same coupon interest rate and original term to maturity and that each
be insured by the FHA or guaranteed by the Veterans Administration (VA).

The mortgage loans which back GNMA securities are fully amortizing. Each
month the issuer of a GNMA security must “pass through” the scheduled interest
and principal payments on the underlying mortgage loans to the holder of the
security, whether or not the issuer has actually collected those payments from
the individual mortgagors. The issuer must also pass through any additional
amounts which are received from the mortgagors for loan prepayments (i.e.,
unscheduled principal repayments) and/or from the FHA or VA for settlements
on those loans in the pool which have been foreclosed. Because GNMA monitors
the performance of the security issuers and because the securities are backed by
the “full faith and credit” of the U.S. Treasury, GNMA pass-through securities
are generally considered to be default-free.

All FHA and VA mortgage loans can be prepaid (i.e., called by the mortgagor)
at any time without a prepayment penalty (i.e., without the payment of a call
premium). Furthermore, the loans are assumable. That is, the mortgagor may
transfer his obligation for the debt. Hence, with FHA and VA mortage loans,
there are not any contractual restrictions which limit mortgagors’ call strategies.
Rational mortgagors will adopt the policy which maximizes their wealth. Thus,
when markets are frictionless, a mortgagor will exercise his call option whenever
his existing loan can be refinanced with an otherwise identical loan which has a
lower effective rate of interest than the rate on the existing loan. On the other
hand, he will never prepay his loan when the market contract interest rate
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exceeds the contract rate of his current loan (i.e., when the market value of the
existing loan is less than its remaining principal balance). We refer to this as the
optimal call policy.

One of the notable characteristics of mortgagors is that, in practice, many of
them call their loans even when the market interest rate is above the contract
rate on their existing loans. These prepayments (which generally occur when a
mortgagor changes his residence and the existing mortgage loan is not assumed
by the purchaser of his house) are a constrained maximum from the perspective
of a rational mortgagor. Nevertheless, we refer to these as “suboptimal” prepay-
ments in order to distinguish them from optimal calls.

II1. Alternative Models for Pricing GNMA Mortgage-Backed Securities

Much of the concern about pricing mortgage-backed securities has focused on
the propensity of mortgagors to prepay or call their loans prior to maturity. In
this section we describe the ways in which (1) the traditional “average life”
method, (2) an abbreviated version of the C & G model (hereafter CG* model,
where the asterisk indicates that we are using an abbreviated version of their
model), and (3) the interest contingent claims model can be used to price GNMA
securities. Each of these models takes a different approach to incorporating the
effect of prepayments on the value of a GNMA security. Our description of the
way in which the first two models can be used is based on conversations with
security dealers.

IIT. A. The “Average Life”” Model

The traditional average life procedure attempts to incorporate prepayments by
assuming that the scheduled interest and principal will be paid on the loan until
a period equal to the “average life” of a portfolio of “comparable mortgages.” At
that point, the remaining principal balance of the loan is assumed to be repaid in
full. The average life can be estimated from FHA actuarial data for mortgage
loan terminations.' In practice, however, the avereage life is typically assumed to
equal 12 years. Given this assumed stream of cash flows and the current market
price for a newly-issued GNMA, a yield-to-average life is computed for the newly-
issued security.

An old security (i.e., one with a shorter remaining term to maturity than the
new one) is priced by assuming that the yield on all outstanding GNMAs is the
same as the yield on the newly-issued one. The expected average life of an old
security is assumed to equal the average life of a comparable portfolio of mortgage
loans which have the same remaining terms to maturity as the security to be
priced. At the end of a period equal to its expected average life, the loan is
assumed to be repaid in full. The estimated price of an old security is obtained by
discounting the assumed stream of cash flows to the present at the computed
yield on the newly-issued security.

! See Curley and Guttentag [4] for a thorough description of these data.
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III. B. The CG* Model

C & G correctly criticize the average-life procedure for ignoring the potential
for a premature loan repayment either before or after the expected average life.
C & G correct for this deficiency by incorporating the entire time distribution of
prepayment probabilities into the yield calculation. They used linear regression
and FHA historical data to estimate the conditional probabilities of a loan
prepayment at the end of each month of the loan’s life given that it is outstanding
at the beginning of the month.”

A variation of the C & G method, which we label CG*, that appears to have
been widely adopted (see, for example, [11]) requires that the yield-to-maturity
on a newly-issued security be computed by solving the following equation for y:

Mf = 2::::_1 ((Cj -+ PJFJ')eV(f—J-))(H’;:l (1 . ij)) (1)

where M, is the market value of a loan after it has been outstanding for ¢ months;
C; is the scheduled principal and interest payment on the loan at the end of
month j — 1; F} is the scheduled remaining principal of the security at the end of
month j — 1; and P, , is the conditional probability that the loan will be prepaid
at the end of month j — k& — 1, given that it is outstanding at the beginning of the
month (P;_ is equal to zero for j — k = t); and n is the number of remaining
scheduled cash flows. The conditional probabilities of a loan prepayment are
computed from FHA actuarial data.

The yield-to-maturity computed with equation (1) for a newly-issued security
is used to price old securities by assuming that the yield-to-maturity is the same
for all GNMAs. Given this yield, equation (1) is solved for the value of other
GNMA securities with shorter remaining terms to maturity.

III. C. The Contingent Claims Model

In a previous paper [6], we developed a model for valuing GNMA securities
which is based on a general equilibrium theory of the term structure of interest
rates under uncertainty derived by Cox, Ingersoll, and Ross [3]. We consider an
economy where the current interest rate for instantaneous riskless borrowing and
lending completely summarizes all information relevant for pricing default-free,
fixed-interest rate securities. The risk-free interest rate is assumed to follow the
mean reverting stationary Markov process given by the stochastic differential
equation

dr = b(r)dt + s(r)dz, (2)
where

biry=kim—r), k,m>0,
s(r) = svr, s constant,

and dz is a Wiener process. The function b(r) is the instantaneous expected
change in the interest rate; % is the speed of adjustment parameter; m is the

* The exact estimation procedure is described in [4].




A Comparison of GNMA Pricing Models 475

steady-state mean of the process; and the function s(r)? is the instantaneous
variance. Negative interest rates are precluded with this mean reverting interest
rate process and the variance of the process increases with the interest rate.

When a mortgagor makes a suboptimal prepayment, investors receive the
principal balance remaining at that time; hence, the market value of the security
“jumps” to its remaining principal balance and the security ceases to exist. We
model suboptimal prepayments as a Poisson-driven or jump process.” Let the
random variable y equal 0 if the loan has not been called and equal 1 if it has
been called. The Poisson process, dy, is given by

dy = 0 if a suboptimal prepayment does not occur
Y 1 if a suboptimal prepayment occurs (3)

where
E(dy) = A(r, 7)dt,

and A(r, 7) is the probability per unit of time of a suboptimal prepayment at time
to maturity 7 and interest rate r.

Given the stochastic processes of the current interest rate and the suboptimal
prepayments, it follows that the value of a GNMA security, V(r, y, 7), which is a
function of the two state variables, r and y, and its remaining term to maturity,
7, is governed by the mixed process

dV=[a(r,7)V—=C(r) = Xr, 7)(F(1) — V)]dt
+ h(r, ) Vdz + [F(r) — V]dy. (4)
In (4), a(r, 7) is the instantaneous expected rate of return on the security, A (r,
7) is the instantaneous standard deviation of the return conditional on the Poisson
event not occurring, and C(7) and F(7) are the scheduled cash flow (per unit of

time) and remaining principal balance, respectively, at time to maturity 7. From
Ito’s lemma and an analogous lemma for Poisson processes, we obtain

alr,r) = [‘/2s(r)2Vﬂ + b(r)V.— V. + C(1) + AM(r, )(F (1) = V)]/V (5)
and
h(r,7)=s(r)V,/V,

where subscripts on V denote partial derivatives.

In [6] we show that if the risk associated with suboptimal prepayments is
diversifiable, a GNMA security must, to avoid arbitrage opportunities, be priced
so that its expected return equals the riskless interest rate plus a risk premium.
That is,

a(r,7)=r+p(r)h(r, 1), (6)

where p(r) is the price of interest rate risk for all interest-dependent securities.
Because V., is generally negative, h(r, 7) is negative, and the risk premium is
positive when p(r) is negative.

“ Ingersoll [8] and Merton [10] have used this approach previously to deal with similar problems.
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The partial differential equation for the value of a GNMA security is obtained
by substituting from (5) for a(r, 7) and A(r, 7) in (6). Making these substitutions
and rearranging yields

hs(r)?V,, + [b(r) — p(r)s(r)]V, = V.
+ Ar, ) F(r) = V] + C(r) =rV. (7)

The combination of the first three terms on the left-hand side of (7) is the
expected (conditional on the information set at time to maturity 7) risk-adjusted
price change of a GNMA security given that a suboptimal prepayment does not
occur. The last two terms on the left-hand side of (7) are the expected change in
the value of the security from a suboptimal prepayment and the scheduled cash
flow, C(r), respectively, when the remaining time to maturity is 7 and the current
interest rate is r. These terms are not risk-adjusted because C(r) and F(r) are
default-free and because there is not a risk premium associated with the subop-
timal prepayments. Hence, (7), like (6), requires that the expected risk-adjusted
return on a GNMA security be equal to the risk-free return.

We assume that the risk adjustment term, p (r)s(r), in (7) is proportional to
the current interest rate, i.e., p(r)s(r) = gr, where g is the proportionality factor.
Making this substitution and substituting from (2) for &(r) and s(r) yields:

Y%s*rVo, + [km — (k+ q)r]V, =V,
—rV+Xr,7)[F(r) = V]+ C(r) =0. (8)

With the initial condition that the value of an amortizing security is zero at
maturity and the boundary conditions that (1) the value of the security goes to
zero as the interest rate approaches infinity and (2) the value of the security can
never exceed its remaining principal balance, equation (8) can be solved numeri-
cally for the value of a GNMA security. The latter boundary condition is deduced
from the effect of the optimal call policy. With frictionless markets, mortgagors
will not allow the market value of a callable loan to exceed its remaining principal
balance because, if it did, they could refinance their existing loans at lower coupon
interest rates. Thus, for each 7 there is some level of the riskless interest rate at
which the call option will be exercised. Riskless interest rates below that level are
not relevant for pricing GNMA securities.

IV. Comparison of the Alternative Models

Before presenting the results of the simulations, some discussion of the differences
among the alternative models is appropriate. The yield-based models are discrete-
time, static, certainty models which assume an unchanging, flat term structure.
On the other hand, the contingent claims model is a continuous-time, dynamic,
uncertainty model which is based on a general equilibrium theory of the term
structure. All three models value GNMAs as single default-free mortgage loans.

The continuous time analogs (i.e., the summation in (1) is replaced with
integration) of the average life and CG* models are special cases of the contingent
claims model which can be obtained by imposing restrictions on the contingent
claims model. In particular, the first term on the left-hand side of (8) is zero under
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certainty and the second term is zero if we additionally assume a flat term
structure. The loan would never be called optimally under those assumptions and
the yield-based models incorporate suboptimal prepayments by replacing the
scheduled cash flows with future cash flow patterns that are assumed to be known
with certainty. With the CG* model, an amortization rate that is more rapid than
the scheduled rate is posited. With the average life model, the security is assumed
to have a final balloon payment and a shorter term to maturity than its scheduled
term to maturity. Hence, with the cash flows assumed by the yield-based models,
the term A(r, 7)[ F' () — V] drops out of (8) and the scheduled rate of cash flow,
C(7), is replaced by the assumed rate of cash flow. Under these assumptions (8)
degenerates to an ordinary differential equation: the solution to that equation is
the continuous time analog of (1). Thus, when the above assumptions provide a
good approximation of the economic environment, the differences among the
prices obtained from the three models will be small. The simulations presented
here are designed to determine if the models give substantially different prices
under alternative plausible scenarios of the market environment. In particular,
we compare the prices generated by the three models when the current term
structure is ascending and when it is descending in a market environment where
future term structures and prepayment cash flows are uncertain.

To compare prices generated by the three models, we use the contingent claims
model to generate the price of a newly-issued security (i.e., a security with a 30-
year term to maturity) that is expected to incur suboptimal prepayments at a
specified percentage of the FHA historical rate. We then use that price as the
benchmark price in order to compute yields-to-maturity by means of the average
life procedure and the CG* model. These yields are then used, as described in
Sections III.A and IIL.B, to price “old” GNMAs. These prices are then compared
to the prices of “old” securities generated with the contingent claims model.*

For the numerical solutions presented, we assume that the mean of the current
interest rate, m, is .056; the variance of the current interest rate, s°, is .008; the
speed of adjustment parameter, £, is .8; and the risk adjustment parameter, g, is
—.247.° When k = .8, the current interest rate is expected to revert halfway back
to its mean in 10.4 months. With these parameters the term structure of interest
rates has a natural tendency to be ascending and, regardless of the value of
current interest rate, the term structure approaches a long-run interest rate,
R (), of .08 per year as time approaches infinity.

For the model of the term structure assumed in this paper, when the current
interest rate, r, is below the long-run interest rate, R (x), the term structure is
upward sloping. The term structure is humped when r is between R (%) and km/
(k + g), and it is downward sloping when r is above km/(k + g). In Table 1 we

* We should emphasize that using the assumed set of term structure parameters and the contingent
claims model to generate the benchmark price of the newly-issued security and then using those same
parameters to price “old” securities with the same model does not work to the disadvantage of the
average life and CG* models. In fact, when the cash flows assumed by the average life and CG*
models are discounted at the interest rates given by the term structure, the resulting price differences
are, in general, substantially larger than those shown. This is because the interest rates given by the
term structure are not appropriate for discounting the cash flows from callable securities.

* These parameters are similar to those estimated by Ingersoll [9].
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set r equal to .06 to compare the prices generated by the models when the term
structure is rising. In Table 2 we set r equal to .12 to compare the prices when the
term structure is falling. In panel A of each table, we assume that the expected
prepayment rate is 100 percent of the FHA historical average. In panels B and C,
the expected prepayment rates are 200 percent and 300 percent, respectively, of
the FHA historical average.® Finally, in each panel we present prices for GNMAs
with coupon interest rates of 6.5 percent and 8 percent.

Columns 2, 3, and 4 of each table contain the prices generated by the average
life model, the CG* model, and the contingent claims model, respectively, when
the security’s coupon interest rate is 6.5 percent.” Column 5 (6) shows the
difference between the prices of the average life model and the contingent claims
model (the CG* model and the contingent claims model) when the coupon
interest rate is 6.5 percent. Columns 7, 8, and 9 contain the prices generated by
the three models when the security’s coupon interest rate is 8 percent. Columns
10 and 11 show the differences between the prices generated by the contingent
claims model and each of the other models for 8 percent securities.

Several general conclusions can be drawn from the tables. The closer the
newly-issued security’s price is to par (i.e., 100.00), the smaller the differences
between the prices (for “old” securities) generated by the alternative models.
This is due to several characteristics of the security’s value. First, the closer the
security’s price to par, the less sensitive is the price to changes in the interest rate
and, therefore, uncertainty has a smaller impact on the security’s value. This is
because the value of the call option is greatest when the security’s price is close
to par. Further, when the security’s price is close to par, the value of a suboptimal
prepayment is small and the value of the security is less sensitive to alternative
assumptions about the stream of cash flows. Finally, because the value of the
security approaches par as the remaining term to maturity decreases, the yields
computed for new and old securities (using prices obtained from the contingent
claims model) are nearly identical when the value of the newly-issued security is
close to par.

Another systematic pattern which is revealed by the tables is that when the
remaining term to maturity is long (i.e., greater than 25 years), the prices obtained
with the average life model are always less than the prices obtained with the
contingent claims model and they are generally less than those obtained with the
CG* model. The price differences are larger the further the price of the newly-
issued security is from par and the higher the expected prepayment rate. This is
because the expected prepayment rates increase dramatically in the first five
years after the security’s issuance and, therefore, the prices generated with the
contingent claims and the CG* models increase rapidly during those years.
However, the prices obtained with the average life procedure, which ignores the

“The expected prepayment rates are computed from the FHA survival rates in [11]. Based on
those data it is not possible to estimate A(r, 7) as a function of both r and 7. Hence, for Tables 1 and
2 we take A to be a function of 7 only.

"We use “average life” as a generic name for any procedure which assumes the loans will be
prepaid in full at a specified point in time. For the prices shown in the tables, average life is computed
as min[12, 7/2].




479

Models

icing

A Comparison of GNMA Pr

80" = () ¥ ¥IL¥e'— = b 1800 = 5 '8 = ¥ 1960’ = w :$s9001d JRI }$IDIUL JO SIISWRIE,]

LB6FO'0 92¥¥00 000007001 £1056'66 YLCG666 — ¥GELG0 C8RILV0 CLBSE 66 16LBL'B6 ¢60¥6'86 g
GLLI00 9L9L00 18E66°66 01926°66 COLI6 66 68L9¢°0 61E9L°0 0069L'86 G¢110E'86 ¢8C00'86 o1
89¢80°0 806600 69186'66 1066866 1928866 EVEBY0 8¥658°0 LEOTO'86 ¥69€G° L6 68091°L6 <l
¥O180°0 FOro1T'0 LOLG6'66 £09.8°'66 EVES8 66 G90EE°0 18268°0 £9B6E L6 88L96°96 cLE0V 96 0g
G¥ELO0 £9011°0 CEO¥6'66 £6998°66 ¢LBT8 66 ELISTO GEVIL'L 6EL8696 995EL°96 Y0ESR'S6 Ge
9C¥eR 66 19¥28'66 99v¢8'66 G9E€89°'G6 0L289°46 BLEBI Y6 0€
aouauadxy yH Jo 1ua01a oog spenbry ayey juawmdedarg pajoadxy 0
9€890°0 GLO90O0 000007001 ¥91£6°66 GT6E6'66 98669°0 GBYICO G0091°66 6109¥°86 025V9'86 g
09160°0 1¥660°0 96686'66 G6E68 66 ¥1988°66 L6¥Y89°0 S91P80 c6V6E 86 96609°L6 LCESY L6 01
1096070 LIEILO 66196'66 6655866 888ER'66 G0ELS 0 LIO¥6'0 ¥e0ce L6 618¥L 96 LOOBE 96 a1
186500 LL¥BO0 GEGBE 66 FOEZR 66 BYLEL 66 198LE°0 6GLYE60 COILE96 &6¢66°496 vevev'u6 0e
622500 9¥e60°0 BLBCER'66 6¥908°66 cE99L'66 1L8%E°0 98E9T'I LLESR'S6 90¥09°66 16889°¥6 e
¥e6sL 66 0£65L°66 6669L'66 SILIS V6 ECIICV6 CEIIC¥6 0g
aouaLadxy] YH JO 18019 00z s[enbyy aiey juswiedar g pajoadxy) g
GI860°0 GL6RO0 00¥66°66 886866 GE¥06'66 L6G88°0 €L91L°0 Y16¥8'86 L1996°L6 I¥PEE 1’86 G
COEE10 EEREL 0 £6896°66 16928766 0902866 86298°0 8GERG0 LBEBY'L6 6861996 096696 01
¥1980°0 99%01°0 ¥B0SB 66 LLVIL 66 619¥L°66 cEBBI 0 6L8S0°T 61.60°96 L8B6E"C6 0¥8E0°G6 Gl
L6¥90°0 ¥6¥60°0 96GLL 66 860166 c0189'66 EGLYY O 129601 E1IBLV6 09EEE¥6 G6FFYLE6 0&
9E£E90°0 ¢0801°0 £00¥L 66 L99L9°66 002£9'66 YIC¥E 0 LGBEL'] 1¢EBRE6 LEBEY'E6 £6¥SL'T6 4
1012966 8012966 60129°66 LOY1S°C6 91¥1<'c6 0Zr1€¢c6 0g
aouaadxy yH Jo 1uaaia o1 sjenby a1vy juawsedal g pajoadxs y
PPOIN [PPOIN [PPOIN PPOIN
(8) — (6) (L) — (8) SR [PPON ] €) — & (@) — (%) swre[n PPN 9] Aumie
EBLIGRENITg] ERIERENITg] juagunuo)) LHBD aderaay AouAIAJI(] U] Juadunuo)) Kok o) aderaay 0] wIa |,
(11) (o1) (6) (8) (L) (9) (©) (%) (€) (@) (1)

%8 S1 aJey] 1sa1aiu] uodno))

Fuisiy st 2INONIS ULIS ], —2%,9
S1 9B} 1SAI9IU] JUALINY) 9Y) UM SINILINDAG paydeg-ofediiop VIAND SunLJ 10j SPPOJA dAIIBWIIY JO uosLreduwo))

1 21qe],

%79 S1 9)ey jsaaaju] uodno))



The Journal of Finance

480

80" = ()Y WILVE —

b ‘800" = .S ‘8" = ¥ ‘960’ = W :s83001d IIBI JSAIANUL JO SIFSWEIR ]

0E90€°1— GSIES 1— 0SL¥L'96 18€50°'86 £06LE 86 YOSV 1— £GCI6T— LI2a0'96 FLOLY'96 £E¥E6'96 g
L3SSE 11— 61816°0— GLIBRG6 COEVI'LE6 C6¥08°96 B998E1— E6L980— OPeEY €6 LOCZ8 V6 E£EE6T V6 (018
ersro 1 — Yaovy 0— £98L0°G6 90LE1"96 BERIG U6 L1164 B 0gee1'0— £ST¥8'16 LVERG'E6 £LE96°16 <l
YEBLY0— LGE6T0 LBLOIVE 1398¢ 56 1EVLIV'V6 068EL°0— 8¥¥8L0 0FSIL 06 0E¥SY' 16 [60E668 0e
¥199%0— a¥ro6 0 8E10S°V6 ¢SLI6'V6 96965°€6 €9165°0— EBOV6T cS0veE 06 C1398°06 6966688 14
£01I¥V'E6 9011¥°€6 90TT¥ €6 £1V1L0'88 GoyY10'88 L1¥10'88 o€
aouatradxsy VH Jo 1uaoniad 00 sienbg] a1ey] juswkedard pajoadxy 0
PeB6S 1 — 08BERT— 1ECEE96 GR0E6°L6 IIILI'B6 CEGSL'1— 8E1SeEe— 0LBIE V6 GOZLO96 BOILS96 g
Q910G T— CO9¥RT 1— 10ZEE"S6 99€T896 9990996 GI919°T— G699¢ T— 0GE9E°C6 VI6L6'E6 YPOE9E6 o1
eviIe1— 0€6GL0— £er1IS Ve G9CTL G6 £GEYC 96 GRILE 1— L¥Sey 0— LVEG9 06 cE668'16 YeLYO' 16 Gl
QelLLO— 050<0°0— 08E20'¥6 GOGBL V6 0EVLOVE 8GCHL0— 99LEE0 YE1EE 68 £6LET06 6GF0R88 08
EGLIY0— L8899°0 T6BLBCE CI9VE' V6 S001E° 66 CEE6Y 0— CLLYI'1 GGTIL'S8 089GZ'68 EREITL 4
BOETO'E6 SIET0'E6 0ZET0'E6 6¥¥69°98 96¥69°98 Per69°98 0g
aouaadxy YHJ Jo 1uadiaJ 00z senby ajey juswArdal g pajoadxy g
£36¥05— 6V6EC G 0506L'56 €L6ER' L6 000€0°86 £0008°¢— 9LE09C— 0LEREE6 £LEBYS6 9¥986°G6 L
698681 — ¥Fe6L’ T— ¥ECesve £0TSH 96 BLLVE 96 VEIS6' 1 — BG09L1— ¢e608'06 9609L°C6 0669¢°C6 01
1S6L¥'1— T1661°T1— cVerL'e6 o6¥5a <6 cSYBE V6 LOGSY' 1— 0E8LL0— 9911888 E£LEIT 06 9668<°68 Gl
L8TE6'0— £92LE0— 168SE €6 6LO61V6 YEIE9'E6 6LYLB0— LEOSE0 6669C L8 SLVYI'BR 19610°L8 0¢
£LE8Y 0— 1229¢°0 £6890°€6 G91G9G°E6 TL90L°¢6 GGV 0— 989671 BZISE98 £8E18°98 orre0°68 <14
¢996¥ 6 96667 C6 L9S6¥ T6 £CEIOV8 9ZE19¥8 6CETOT8 0g
aouanadxs] VH Jo Jusaiad ool sienby arey uswiedarg pajoadxy 'y
?POIN PPOIN [PPOIN PPON
(8) — (6) (L) — () B 8 [PPOIN T (€) — (¥) (@) — (¥) suren PPOIN Py Ajuney
ADUIJ(T OUIIJJIC] juafunuo)) LHOBD afetaay ERIERET I Tg | ADUAIII(T Jjuagunuo)) Rk Je) afelaAy 0] uLId I,
(I1) (01) (6) (8) (L) (9) (€) (¥) (£) (@) (1)

%R S 918y 1sa1ajuf uodno))

%9 st ajey 1sa1aju] uodno))

durqre st 2InjoNNG W [, —%G1
S1 971 1S9I91UJ JUSLIN,) 3} USYM SaNLINIAG payoeg-a8ed1iojA YINNL SuroL g 10J S[PPOJA 2AIBUIY JO uosLeduro))

g 21qe],



A Comparison of GNMA Pricing Models 481

possibility of a prepayment in the early years of the security’s life, approach an
asymptote as the term to maturity is lengthened to 30 years.

Table 1 shows that when the current interest rate is .06, the average life
procedure and the CG* model consistently give prices that are less than those
generated by the contingent claims model. Conversely, Table 2 shows that when
the current interest rate is .12, the CG* model consistently yields prices that are
greater than those generated by the contingent claims model and the average life
procedure gives prices which are greater than those obtained from the contingent
claims model when the remaining term to maturity is less than 20 years. These
results are due to the assumption, embodied in the average life procedure and the
CG* model, that the term structure is flat. Thus, all future cash flows are
discounted at the same interest rate. When the term structure is rising, this
procedure will “overdiscount” near-term cash flows and it will “underdiscount”
far-term cash flows. The reverse will be true when the term structure is downward
sloping. Contrarily, the contingent claims model makes use of information con-
tained in the entire term structure when discounting future cash flows. When the
term structure is flat, the prices generated by the three models are nearly
identical.

The effect of the coupon interest rate can be seen by comparing the differences
in prices for coupon rates of 6.5 percent (columns 5 and 6) and 8 percent (columns
10 and 11). When the term structure is rising (Table 1), the differences between
the prices generated by the models are greater for securities with lower coupon
rates than for those with higher coupon rates. This is true regardless of the
remaining term to maturity of the securities. When the term structure is falling
(Table 2), the differences between the prices generated by the alternative models
are, in general, greater for securities with lower coupon rates than for those with
higher coupon rates. Comparing the prices from the CG* and contingent claims
models, the differences are always greater for the security with the lower coupon
rate when the expected prepayment rate equals either 200 or 300 percent of FHA
experience. However, when the expected prepayment rate equals 100 percent of
FHA experience, the differences are smaller (larger) for the 6.5 percent security
than the 8 percent security when the remaining term to maturity is long (short).
We should note, in this regard, that the difference in prices generated by the
alternative models is zero for securities with 30 years to maturity and for those
with zero years to maturity. Thus, as the term to maturity declines, the absolute
value of the differences in prices given by the CG* and contingent claims models
first increase and then decrease. The rate at which this phenomenon occurs
depends upon the characteristics of the security and the value taken on by the
parameters of the term structure.® :

“The results shown here are representative of those obtained with other assumptions about the
parameters of the interest rate process. In particular, the prices obtained from the CG* model are, in
general, greater than, nearly equal to, or less than those obtained from the contingent claims model
when the term structure is descending, nearly flat, or ascending. In general, the smallest differences
are obtained when the value of the newly-issued security is close to par. Hence, for a given deviation
of the current interest rate from the long-run interest rate, R (%), the differences are generally smaller
when the term structure is rising than when it is falling. As the mean of the current interest rate, m,
is increased, holding k, s” and g constant, the value of the newly-issued security decreases and the
differences in the prices obtained from the alternative models are much larger than those shown in
Table 1.
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In the previous comparisons we assumed, for all levels of the current interest
rate, that the mean, A(r, 7), of the Poisson process driving the suboptimal
prepayments equaled the prepayment probabilities, P(7), used by the CG* model.
However, Curley and Guttentag [4] provide empirical evidence that the prepay-
ment probabilities decrease as the current interest rate increases. We incorporate
that effect by allowing the prepayment probabilities to depend on both the
current interest rate and the remaining time to maturity. Specifically, for each
remaining time to maturity, we assume that the prepayment probabilities decay
exponentially as the riskless interest rate at that time rises above the security’s
coupon rate. In Table 3 we compare the prices obtained from the alternative
models for an 8 percent GNMA when the current interest rate is 12 percent. The
rate of decay assumed for the comparisons shown on the left-hand side of the
table is smaller than that assumed on the right-hand side of the table. Comparing
the differences shown in Table 2 for an 8 percent security with those shown in
Table 3 indicates that the absolute value of the differences in prices obtained
from the contingent claims model and the CG* model increase as the rate of
decay increases and that this effect is larger the higher the expected prepayment
rate.” This is because the CG* model assumes the prepayments are certain,
regardless of the level of future interest rates.

V. Conclusion

In this paper we use simulation and sensitivity analysis to compare alternative
models for the pricing of GNMA mortgage-backed securities. We compare prices
generated with a contingent claims model developed in [6] to those generated by
the traditional average life procedure and a variation of a model developed by
Curley and Guttentag [5]. The bottom line in all of these comparisons is whether
the differences in prices are “significant.” In a large measure, the answer to that
question lies in the eye of the beholder. However, prices for GNMAs are quoted
in intervals of one thirty-second of a point. If we use one thirty-second of a dollar
as the benchmark, all of the differences in prices shown are significant. Given the
large quantities in which most institutions trade GNMA securities, small differ-
ences in prices represent large dollar amounts. The remaining empirical question
is whether the contingent claims model yields “good” predictions of observed
market prices. If so, the contingent claims model should be useful to GNMA
dealers and the portfolio managers of savings banks, life insurance companies,
and pension funds who are the primary traders of GNMA mortgage-backed
securities.
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DISCUSSION

DAVID F. SEIDERS*: Most of the literature on the GNMA futures market has
been descriptive, and the “success” of the market too often has been measured
solely in terms of the volume of activity. Professor Figlewski should be com-
mended for addressing a question with important economic content. Indeed, the
effect of GNMA futures markets on the stability of GNMA prices in the cash
market can have significant consequences for the volume of residential mortgage
and housing activity. Less stable spot prices for GNMAs, for example, could make
these securities less attractive to investors, and higher average levels of yields on
GNMAs—as well as on federally underwritten residential mortgages—could
result.

The Figlewski paper concludes that the GNMA futures market has had a
destabilizing effect on spot prices for GNMAs, even though competitive conditions
prevail and price manipulation is not a factor. This conclusion is striking since
such an effect had not been identified in previous studies of various commodity
markets or in a prior study of the GNMA market. Moreover, the recent Treasury/
Federal Reserve study of Treasury futures markets did not view destabilization
of spot prices for Treasury securities to be a serious concern, at least under
competitive market conditions.

Two arguments for destabilization appear to be intertwined in this paper, and
it is useful to scrutinize them separately. One of the arguments, commonly offered
in the context of competitive markets, runs as follows: futures markets encourage
speculation by reducing the costs involved; speculators drive futures prices to
levels out of line from market fundamentals; the swings in futures prices are

* Board of Governors, Federal Reserve System.
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