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THE JOURNAL OF FINANCE e VOL. XXXVI, NO. 3 ¢ JUNE 1981

Valuation of GNMA Mortgage-Backed Securities

KENNETH B. DUNN and JOHN J. McCONNELL*

ABSTRACT

GNMA mortgage-backed pass-through securities are supported by pools of amortiz-
ing, callable loans. Additionally, mortgagors often prepay their loans when the market
interest rate is above the coupon rate of their loans. This paper develops a model for
pricing GNMA securities and uses it to examine the impact of the amortization, call,
and prepayment features on the prices, risks and expected returns of GNMA’s. The
amortization and prepayment features each have a positive effect on price, while the
call feature has a negative impact. All three features reduce a GNMA security’s interest
rate risk and, consequently, its expected return.

Introduction

IN THIS PAPER WE present a model for the valuation of Government National
Mortgage Association (GNMA) mortgage-backed pass-through securities. We
then use the model to evaluate various facets of the pricing, returns, and risks of
GNMA securities relative to those of other types of fixed rate securities. The
paper is motivated by the considerable interest among portfolio managers,
financial analysts, security dealers, and government officials in the pricing and
investment performance of GNMA securities ([9], [17], [19], [20], [22], [23]).

In Section I we describe the unique characteristics of the GNMA security. In
Section II we summarize and recapitulate the essential features of the generic
model for pricing interest dependent securities developed by Brennan and
Schwartz [2] and Cox, Ingersoll, and Ross [5]. In Section III we extend the generic
bond pricing model to incorporate the unique characteristics of GNMA mortgage-
backed pass-through securities. In Section IV we present numerical solutions for
the prices of three types of default-free bonds: (1) nonamortizing, noncallable
coupon bonds; (2) nonamortizing, callable coupon bonds; and (3) amortizing,
noncallable bonds. We then compare these with solutions for GNMA mortgage-
backed pass-through securities. The solutions are presented for alternative as-
sumptions about the shape of the term structure of interest rates, the remaining
terms to maturity of the securities, and the rate at which the individual mortgage
loans that back the GNMA security are expected to be “prepaid.” These com-
parisons are designed to highlight the impact of the call, amortization, and
prepayment features on the pricing, returns, and risks of GNMA securities. A
final section contains a conclusion.

* This paper has benefited from helpful comments by J. Ang, M. Brennan, P. Hendershott, R.
Johnson, W. Kracaw, M. Long, G. Schlarbaum, C. Spratt, R. Thompson, and Eduardo Schwartz. We
are especially grateful to J. Ingersoll, S. Richard, and G. Wright for many helpful- discussions and
suggestions.
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600 The Journal of Finance
I. GNMA Mortgage-backed Pass-through Securities

GNMA mortgage-backed pass-through securities are issued by mortgagees, gen-
erally mortgage bankers, who are approved by the Federal Housing Administra-
tion (FHA). Prior to issuing the security, a mortgage banker must generate a pool
of new individual residential mortgage loans. GNMA requires that all the loans
in a pool have the same coupon interest rate and original term to maturity and
that each be insured by the FHA or guaranteed by the Veterans Administration
(VA). Once GNMA approves the mortgage loans in the pool, the issuer can either
sell GNMA securities (i.e. participations in the pool) directly to individual
investors or sell the entire issue to a GNMA dealer. Subsequently, the issuer is
responsible for servicing the loans in the pool. For providing this service the
issuer receives a monthly administration fee of .0367 percent per month (.44
percent per year) of the remaining principal balances of the loans in the pool. For
guaranteeing the pool GNMA charges a fee of .005 percent per month (.06 percent
per year) of the remaining principal balances of the loans in the pool. Thus, a
GNMA security is issued with an annual coupon interest rate that is .50 percent
less than the contract rate on the underlying mortgage loans.

Each month the issuer of a GNMA security must “pass through” the scheduled
interest and principal payments on the underlying mortgage loans to the holder
of the security, whether or not the issuer has actually collected those payments
from the individual mortgagors. Each month the issuer must also pass through
any additional amounts which are received from the mortgagors for loan prepay-
ments and/or from the FHA or VA for settlements on those loans in the pool
whicl ba—e been foreclosed. If the security issuer defaults on the monthly
paymeins, GNMA assumes responsibility for the timely payment of principal and
interest. Because GNMA monitors the performance of the security issuers and
because the securities are backed by the “full faith and credit” of the U.S.
Treasury, GNMA pass-through securities are generally considered to be riskless
in terms of default.

The mortgage loans which back GNMA securities are fully amortizing. Each of
the equal monthly payments on the loans includes interest on the outstanding
principal balance and a partial repayment of principal.! Because the fee for
servicing and guaranteeing the loans is a fixed percentage of the declining
principal of the loans, the scheduled monthly payment to the holders of the
security increases slightly through time, approaching the total monthly payment
on the underlying loans at maturity.

All FHA and VA mortgage loans can be prepaid (i.e. called by the mortgagor)
at any time without a prepayment penalty (i.e. without the payment of a call
premium). Furthermore, the loans are assumable. That is, the mortgagor may
transfer his obligation for the debt. Hence, with FHA and VA mortgage loans
there are no contractual restrictions which limit mortgagors’ call strategies. Thus,
when markets are frictionless, mortgagors will exercise their call option only when

! Recently GNMA began guaranteeing securities backed by graduated mortgage loans. Although
the pricing model derived in this paper can price securities backed by graduated payment loans and
other nonstandard mortgage loans, we focus on securities backed by standard 30-year amortizing
loans because they are by far the most widely issued securities to date.
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Mortgage-Backed Securities 601

they can refinance their existing loan with a similar loan that has a lower contract
interest rate.

One of the notable characteristics of mortgagors is that, in practice, many of
them call their loans even when the market interest rate is above the contract
rate on their existing loans. These prepayments are generally associated with one
of the following events: (1) a mortgagor changes his residence and the obligation
for the existing mortgage is not assumed by the purchaser of his house; (2) the
present house is refinanced so that the owner can withdraw equity; or (3) the
mortgagor defaults on his loan.?

The fact that GNMA requires all loans in a pool to be approximately homog-
enous is especially convenient for our purposes. This requirement allows us to
value a GNMA security as if it were a single default-free mortgage loan.?

II. The Generic Pricing Model

The model for valuing GNMA mortgage-backed pass-through securities is based
on the generic model for pricing interest contingent securities developed in [2]
and [5]. The generic model is derived from the following assumptions:

A.1: The value of a default-free fixed interest rate security, V(r, 1), is a
function only of the current value of the instantaneous risk-free rate,
r(t), and its term to maturity .

A.2: The interest rate for instantaneous riskless borrowing and lending
follows a continuous stationary Markov process given by the stochas-
tic differential equation

dr = u(r) dt + o(r) dz (1)
where

wr)=kim—r), km>0,
o(r) = oﬁ, o constant, and

dz is a Wiener process with E(dz) = 0 and dz* = dt with probability
1. The function u(r) is the instantaneous drift of the process, k is the
speed of adjustment parameter, m is the steady-state mean of the
process, and the function o*(r) is the instantaneous variance. Negative
interest rates are precluded with this mean reverting interest rate
process and the variance of the process increases with the interest
rate.

A.3: The risk adjustment term, p(r)a\/r_‘ is proportional to the spot interest
rate, i.e.

p(Navr=gr, 2)

? Because of the mortgage insurance, default of an individual loan is equivalent to a loan prepayment
from the perspective of a GNMA security holder.

® The mortgage loans which back a GNMA security are composed of three values—default-free
financing, default insurance, and servicing. With a GNMA security, the servicing is provided by the
security issuer, while the U.S. Government provides the default protection. As a consequence, the
value of a GNMA security is the value of the default-free financing.
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where q is the proportionality factor and p(r), the price of interest
rate risk, equals the equilibrium expected instantaneous return in
excess of the riskless return per unit of risk for securities which satisfy
Al

A.4: Individuals are nonsatiated, have risk preferences consistent with (2),
and agree on the specification of Equation (1).

A.5: The capital market (including the market for individual junior and
senior mortgage loans) is perfect and competitive; trading takes place
continuously.

A.6: The cash flows C(1) from any security (including a GNMA security)
are paid continuously.

Assumption A.1 means that a single state variable, the current risk-free interest
rate, completely summarizes all information which is relevant for the pricing of
fixed-rate securities. Because changes in the value of all default-free fixed-rate
securities are governed by the same random variable, the returns on all fixed-rate
securities are locally perfectly correlated. Assumptions A.1 to A.5 lead to the
model of the term structure of interest rates derived by Cox, Ingersoll, and Ross
[6] in a general equilibrium framework for an economy with a single source of
uncertainty.’ This model of the term structure provides the foundation for the
GNMA pricing model.

Assumptions A.4 and A.5 ensure that a borrower will prepay his loan according
to the optimal call policy. Specifically, a borrower will never let the market value
of this existing loan exceed its outstanding principal balance. If this condition
were violated, the loan could be refinanced with an otherwise identical loan which
has a lower effective rate of interest than the rate on the existing loan.

Although the cash payments from most fixed-rate securities occur at discrete
intervals, most securities are traded with interest that accures daily. Thus, the
assumption of continuous cash flows, A.6, is a convenient means of approximating
the way in which fixed-rate securities (including GNMAs) are actually traded.

Given the assumptions above and the hedging arguments developed by Black
and Scholes [1] and Merton [15], it follows that the value of a default-free security
must satisfy the nonstochastic parabolic partial differential equation (PDE)

% o(r)?V,, + [p(r) = p(r)o(n]V, ~ V.~ rV + C(7) =, 3

where subscripts on V denote partial derivatives. This equation is a special case
of the fundamental valuation equation derived by Cox, Ingersoll, and Ross [5] for
the value of any contingent claim and differs from the PDE derived by Brennan
and Schwartz [2] for valuing several types of bonds only with respect to the
functional forms of o(r), u(r), and p(r).

According to the generic bond pricing model, differences among interest-
dependent claims are reflected in the form of their cash flows and the boundary
conditions which Equation (3) must satisfy. At maturity, r = 0, the value of a

* Cox, Ingersoll, and Ross [5] derive a general equilibrium model of the term structure for an
economy with many sources of uncertainty of which the model assumed in this paper is a special case.
In a preliminary report on their joint work, Ingersoll [10] derives the model where the risk-free

interest rate is the only state variable. Brennan and Schwartz [3], Dothan [6], Langetieg [13], Richard
[18], and Vasicek [21] also derive continuous time models of the term structure of interest rates.
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default-free bond must equal its face value or remaining principal balance F'(0).
This provides the initial condition

V(r, 0) = F(0). (4)

For a bond with continuous amortization payments, F(0) is zero. For a nonamor-
tizing bond, F(0) is equal to the face value of the bond.

The value of an interest-dependent security goes to zero as the interest rate
approaches infinity. This yields the boundary condition

lim,. V(r, 7) = 0. (5)

With the assumed interest rate process, r = 0 is a natural boundary. Setting r
= 0 in (3) and substituting from (1) for ¢(0) = 0 and u(0) = km, we obtain

kmV,.+ C(r) = V. (6a)

which is the boundary condition for noncallable bonds at r = 0.

For callable bonds, the region of the interest rate is limited by the optimal call
policy. Optimal calls are driven by the stochastic process governing the risk-free
interest rate. For each 7 there is some level of the risk-free interest rate, say r.(r),
for which V[r.(1), 7] = F(7) and the call option will be exercised. Risk-free interest
rates below r.(7) are not relevant for pricing callable bonds. The effect of the
optimal call policy is to preclude the market value of a bond from exceeding its
remaining principal balance; therefore, the boundary condition for a callable bond
is

Vir, ) = F(7). (6b)

Given the boundary conditions above and the relevant functional form of the
cash flows, Equation (3) can be solved for the value of any default-free interest-
dependent security for which Assumptions A.1 through A.6 are appropriate.

III. The GNMA Pricing Model

As we discussed above, one of the notable characteristics of mortgagors (or at
least those whose loans are pooled to support GNMA securities) is that they often
call their loans at times other than those that would be dictated by the optimal
call policy. We differentiate between the two types of prepayments by referring
to those which occur when r is above r. as “suboptimal” prepayments.’ In an
efficient market, the price of a GNMA security will reflect the possible occurrence
of suboptimal prepayments and the generic pricing model must be modified to
incorporate them. To do so, we add the following two assumptions:

® We use the term “suboptimal” in a casual sense. The prepayments are suboptimal only in the
sense that the amount of the prepayment (i.e. the outstanding balance of the loan) exceeds the market
value of the debt. Mortgagors cannot repurchase the debt at its market value and a perfect market for
the “capital gain” (i.e. the face value less the market value) does not exist; therefore, the “suboptimal”
prepayments are constrained maximum. Hence, the prepayment decisions of mortgagors are not
suboptimal, but the prepayments are a suboptimal relative to those which would be observed if
mortgagors had direct access to the capital market or if there were a perfect market for the capital
gain on mortgage loans.
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A.7:  Prepayments which occur when the value of a GNMA security is
less than its remaining principal balance follow a Poisson-driven
process. The Poisson random variable, y, is equal to zero until the
loan is called suboptimally. If y jumps to one, there is a suboptimal
prepayment and the security ceases to exist. The Poisson process,
dy, is given by

dy = 0 if a suboptimal prepayment does not occur
Y 1 if a suboptimal prepayment occurs

where
E(dy) = A(r, 7) dt (7)

and A(r, 1) is the probability per unit of time of a suboptimal
prepayment at a time to maturity T and interest rate r.

A.8: Prepayments which occur when the value of a GNMA security is
less than its remaining principal balance are uncorrelated with all
relevant market factors and are, therefore, purely nonsystematic.

With the addition of Assumption A.7, the value of a GNMA security V(r, 7, y), is
a function of two state variables, r and y, and is governed by the mixed process

dV=la(r,)V—C(1r) = Nr, 7)(F(r) — V)] dt
+ s(r,7)Vdz + [F(r) — V]dy. (8)

In (8), a(r, 7) is the total instantaneous expected rate of return on the security
and s(r, 7) is the instantaneous standard deviation of the return, conditional on
the Poisson event not occurring. From Ito’s lemma and an analogous lemma for
Poisson processes (Merton [14]), we obtain

a(r, ) = [%0(r)? Ve + u(r) V. = V. + C(7) + A(r, T)(F(1) — V)]/V
and
s(r, ) =0o(r)V,/V. 9

A portfolio containing a GNMA security and any other interest-dependent
security can be constructed so that the uncertainty due to unexpected changes in
the interest rate is completely eliminated. Let &(r, 7) denote the instantaneous
expected rate of return and g(r, 7) denote the standard deviation of the return on
the other security. The interest rate risk can be eliminated by investing the
proportion g/(g — s) in the GNMA security and by investing the proportion
—s/(g — s) in the other security. The rate of return on this portfolio is

dP_( g L (F=V\ _s F-V
-5 )5 -tnas () o] o

Most of the time the realized return on this portfolio will equal the coefficient of
dt in (10), but, when there is a suboptimal prepayment, there will be an unex-
pected return equal to the proportion of the portfolio invested in the GNMA
security times (F' — V) /V.

Because of the importance of Assumption A.8 to our model, some additional
discussion is appropriate. From A.7 the prepayment probabilities depend only on

This content downloaded from 128.210.126.199 on Wed, 10 Feb 2016 19:07:51 UTC
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

Mortgage-Backed Securities 605

the time to maturity and the interest rate at that time. By introducing the
dynamics for other market factors, the prepayment probabilities could be made
to depend on additional state variables. Assumption A.8 means that given the
state of the economy at the beginning of any time interval, the Poisson process
is uncorrelated with changes in the state variables during that time interval.
Therefore, prepayments are unique to each security and the uncertainty due to
the suboptimal prepayments can be costlessly diversified away. As a consequence,
there is not a risk premium associated with the suboptimal prepayments and the
expected return on the portfolio must be the riskless rate of return, r. Setting the
expected value of dP/P equal to r dt and rearranging, we obtain
a—-r b-r

s g = p(r). (11)
Thus, if the risk associated with suboptimal prepayments is diversifiable, a
GNMA security must be priced so that its equilibrium expected excess return per
unit of risk equals the price of interest rate risk, p(r), for interest-dependent
securities.

The partial differential equation for the value of a GNMA security is obtained
by substituting from (9) for a(r, 7) and s(r, 7) in (11). Making these substitutions
and rearranging yields

Yo (r):V,r + [u(r) — p(r)a(®) ]V, = V.,
—rV+C()+ A, 1)[F(1) = V] =0 (12)

Comparing (12) with (3) shows that (12) contains the additional term A(r, 7)[ F'(7)
— V(r, 7, y)]. This additional term is the expected value of a suboptimal
prepayment when the remaining time to maturity is T and the riskless interest
rate is r. If the Poisson event occurs, investors will receive F (7). At that point,
the market value of the security will “jump” by the amount F(r) — V(r, 1, y).
Hence, A(r, 7)[F(r) — V] is an additional component of the expected change in
the value of the GNMA security. Like (11), (12) requires that the expected risk-
adjusted return on a GNMA security be equal to the instantaneous risk-free
return.
Substituting for u(r) and o(r) from (1) and for p(r) from (2), we obtain

Y%erV,.+ [km — (k + q)r]V, =V,
—rV+C(r) + A(r, 7)[F(r) — V] = 0. (13)

With the initial condition, (4), the boundary conditions, (5) and (6b), (13) can be
solved for the value of a GNMA mortgage-backed pass-through security.

IV. Comparison of GNMA Mortgage-backed Securities with other types
of Fixed-rate Bonds

A. Preliminaries

The mean of the Poisson process driving suboptimal prepayments is equal to zero
for all securities except a GNMA security with suboptimal prepayments. Further,

% Ingersoll [11] and Merton [16] have used this approach previously to deal with similar problems.
” This is similar to equation (7.15) in Brennan and Schwartz [4].
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with A = 0, (13) coincides with (3). Thus, by setting A = 0 in (13) and changing
either the boundary conditions and/or the functional form of the future cash
flows, (13) can be solved for the prices of each of the other fixed-rate securities of
concern. We use an implicit finite difference method, as described by Brennan
and Schwartz [2], to solve (13) with the boundary conditions (4) through (6a) or
(6b) for the price of: (1) a nonamortizing, noncallable coupon bond; (2) a
nonamortizing callable coupon bond; (3) an amortizing, noncallable bond; (4) a
GNMA security when the optimal call policy is followed; and (5) a GNMA
security with suboptimal prepayments. Comparison of the solutions for the
various types of securities illustrates the effects of the amortization feature, the
call option, and the suboptimal prepayments on the value, risk, and expected
return of a GNMA security.

For the models presented in this paper, the value of every interest-dependent
security is a function of the risk-adjustment parameter, ¢, and the parameters Z,
m, and o” of the stochastic process which governs the instantaneous interest rate.
From Cox, Ingersoll, and Ross [5] we know that the price of every interest-
dependent security and, therefore, the price of a GNMA security decreases with
increases in the instantaneous interest rate, r, the long run mean of the current
interest rate, m, and the risk premium (which is the product of the risk-adjustment
parameter, g, and the interest rate elasticity of the security’s price). Further, the
price of noncallable security increases with increases in the variance of the
current interest rate, o>. Because of the call option, however, an increase in ¢ can
either increase or decrease the value of a callable security such as a GNMA.
When the term structure is falling (rising), prices increase (decrease) as the speed
of the adjustment parameter, %, increases. For the numerical solutions presented,
we assume k = .8, m = .056, o> = .008, and q = .247.2 The value of q is calculated
by assuming that the long run interest rate, R () is .08 per year.” When k& = .8
the current interest rate is expected to revert halfway back to m in 10.4 months.

In the numerical illustrations we assume that the mean of the Poisson process
driving the suboptimal prepayments, A(r, 7), is a function only of the remaining
term to maturity of the loans supporting to the GNMA security. The A(r)’s are
estimated from the historical FHA actuarial data in [17]. With those data it is
not possible to estimate the expected prepayment rates as a function of both r
and 7.

Tables I and II contain selected numerical solutions for the four types of
interest-dependent securities described above. To facilitate comparisons among
the securities, the prices shown are stated per $100 of remaining principal balance.

8 These parameters are similar to those estimated by Ingersoll [12].

® The absence of arbitrage requires that the expected excess return per unit of risk, p(r), be the
same for all interest-dependent securities. Therefore, the risk adjustment term, p(r)m/; = gr, is not
a function of maturity and one maturity is as good as another for the purpose of estimating q. Cox,
Ingersoll, and Ross [5] show that the yield-to-maturity on a discount bond, R (r, 1), approaches a
limiting value which is independent of the current interest rate as the time to maturity goes to infinity.
This limiting yield is R(») = 2km/(g + k + q) where g = V(k + q)* + 26°. Solving for ¢ we obtain

_(m \ IR
q_k<R(oo) l) 2km
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Each of the securities is assumed to have an original term to maturity of 30 years
and a coupon interest rate of 8 percent per year. The probabilities of a suboptimal
prepayment are stated relative to the historical FHA experience. For example,
100 percent FHA experience indicates that the A(r)’s equal the historical FHA
prepayment rates, while 200 percent FHA experience means that they are twice
the FHA rate.

In Table I the current instantaneous interest rate, which determines the entire
term structure, is varied from zero to 20 percent per year. When the current
interest rate, r, is below the long run interest rate of 8 percent per year, the term

structure is ascending. The term structure is humped when r is between R ()
and km/(k + q) and falling when r is above km/(k + ¢). This table indicates the
impact of the amortization feature, the call option, and the suboptimal prepay-
ments on the price of a GNMA security at different levels of the current interest
rate when the remaining term to maturity of each security is 30 years.

Column 1 of Table I gives the level of the current interest rate. For each level
of the current interest rate, Column 2 shows the corresponding yield-to-maturity
on a pure discount bond with a 30-year term to maturity. Together, these two
columns provide an impression of the term structure of interest rates, given the
assumed market parameters. Column 3 gives the values of the nonamortizing,
noncallable bond. Column 4 shows the prices of the nonamortizing, callable bond.
Column 5 presents the prices of the amortizing, noncallable bond. Columns 6, 7,
and 8 contain the prices of GNMA securities under the optimal call policy and
when the prepayment rates are 100 and 200 percent of the FHA experience,
respectively.

B. The Shape of the Term Structure
B. 1. The Call Option

Table I shows that the noncallable bonds are more valuable than the otherwise
identical callable ones. The price of each bond declines as the current interest
rate is increased from zero to 20 percent. However, the magnitude of the decrease
in value is greater for the noncallable than for the callable securities. Unlike a
noncallable bond, the value of a callable bond cannot exceed its call price, here
$100. With 30 years to maturity, the level of the current interest rate at which the
8 percent nonamortizing callable bond (Column 4) will be called, r., is between 4
and 5 percent. For each of the GNMA securities (Columns 6, 7, and 8), r., is
between 5 and 6 percent. When the current interest rate is below r., a callable
security will have been called at its call price of $100.

At every level of the instantaneous interest rate the value of the call option can
be computed by subtracting the value of a callable security from the value of an
otherwise identical noncallable one. At “high” levels of the current interest rate,
the call option has a smaller impact on the total value of the security than when
the interest rate is low. This is because there is a smaller probability that the
option will eventually be exercised optimally when the current interest rate is
high. For example, when the current interest rate is zero the difference in the
values of otherwise identical callable and noncallable bonds (i.e. Column 3 less
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Mortgage-Backed Securities 609

Column 4 and Column 5 less Column 6) is about $13.00. When the current interest
rate is 20 percent, the difference in values is about $2.00.

B. 2. The Amortization Feature

The impact of the amortization feature on value can be seen by comparing the
nonamortizing, noncallable bond (Column 3) with the amortizing, noncallable
bond (Column 5) and by comparing the nonamortizing, callable bond (Column 4)
with the GNMA security under the optimal call policy (Column 6). With the
assumed market parameters, the amortization feature has a relatively small
impact on the values of the securities when their remaining terms to maturity are
30 years.® The differences between the prices in Columns 2 and 4 and between
those in Columns 3 and 5 range in absolute value from about $.01 to about $.42.

Note, however, (by comparing Columns 3 and 5) that for high levels of the
current interest rate an amortizing, noncallable bond is more valuable than a
nonamortizing, noncallable one, but the difference in value declines as the current
interest rate declines so that the value of the nonamortizing bond eventually
exceeds the value of the amortizing one. This phenomenon occurs because the
level cash flows from the amortizing bond are always greater than those from the
nonamortizing one until maturity when the total principal of the nonamortizing
bond is repaid. When the current interest rate is high, relative to the contract
rate on the securities, the final payment on the nonamortizing bond is severely
discounted so that the amortizing bond is more valuable than the nonamortizing
one.

The valuation relationship is reversed when the current interest rate passes
below the long-term interest rate of 8 percent (which is the coupon rate of the
bonds). In other words, the amortizing, noncallable bond is more (less) valuable
than the nonamortizing, noncallable one when the discount rates given by the
term structure are above (below) the coupon rate on the securities. However, for
equal absolute differences between the current interest rate and 8 percent, the
absolute value of the differences in the prices of the two bonds are, in general,
smaller when r is above 8 percent than when it is below 8 percent. For example,
the absolute value of the difference in the prices is .08419 when r is 4 percent and
.07864 when r is 12 percent. This is because when k& = .8, the current interest rate
is expected to revert rapidly to its steady-state mean of 5.6 percent. Thus, the
term structure has a “natural” tendency to be ascending and below the 8 percent
coupon rate of these securities. Hence, there is a “natural” tendency for a
nonamortizing, noncallable bond to be more valuable than an amortizing, non-
callable one.

We should note, however, that there is an interactive effect between the
amortization feature and the call option. The nonamortizing, noncallable security
is more valuable than the amortizing, noncallable one when both of them are
selling at a premium to their face values. However, when they are both selling at
a discount, the amortizing security is more valuable. Because the call option

' The difference in the prices of an amortizing bond and a nonamortizing bond would be larger if
we had assumed a lower value for the speed of adjustment parameter % or if we also allowed for
uncertainty in the long run interest rate (e.g. see [3], [5] and [18]).
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prevents a callable security from selling at a premium, an amortizing, callable
security is more valuable than an otherwise identical nonamortizing, callable
security. Comparing Columns 6 and 4 shows that the GNMA security with the
optimal call policy is more valuable than the nonamortizing callable bond for all
relevant levels of the current interest rate. Further, comparing the difference
between Columns 3 and 4 with the difference between Columns 5 and 6 shows
that a call option on a nonamortizing security is more valuable than a call option
on an amortizing security.

A comparison of Columns 6 and 3 shows that the GNMA security with the
optimal call policy is less valuable than the nonamortizing, noncallable bond for
all levels of the current interest rate. As discussed above, most of the difference
in value is due to the callability feature and very little is due to the amortization
feature.

B. 3. Suboptimal Prepayments

The last three columns of Table I show that the effect of suboptimal prepayments
is to increase the value of a GNMA security and that the effect is greater the
higher the current interest rate. This occurs because the increase in an investor’s
wealth due to a suboptimal prepayment is greater the larger the discount of the
security’s price from face value. The increase in value due to suboptimal prepay-
ments also increases with increases in the expected rate of suboptimal prepay-
ments.'!

For example, as the current interest rate rises from 5 percent to 20 percent, the
‘difference between the value of the GNMA security with the optimal call policy
and the one with an expected prepayment rate that is 100 percent of the FHA
experience (i.e. Column 6 vs. Column 7) increases from zero to slightly over $1.00.
When the expected prepayment rate is 200 percent of the FHA experience, the
additional value due to suboptimal prepayments (i.e. Column 6 vs. Column 8)
increases from zero to almost $2.00 as the interest rate rises from 5 percent to 20
percent.

C. Risk and Return

The information contained in Table I can also be used to examine the effect of
the call option, the amortization feature, and the suboptimal prepayments on the
risk and instantaneous expected return of the GNMA security. Let a(r, ) denote
the expected return of the securities. From Equations (2), (9), and (11), a(r, 7) =
r + q[rV,/V]. Thus, the expected return equals the current risk-free rate plus a
risk premium proportional to the interest rate elasticity of a security’s price.
Because the interest rate elasticity of each bond and the risk-adjustment param-
eter, q, are both negative, the expected return increases with increases in the
absolute value of a security’s interest rate elasticity. By using a centered finite
difference approximation V,, the interest rate elasticity of the price of each

' If the prepayment probabilities were assumed to decrease with increases in the interest rate, the
increase in value due to suboptimal prepayments would be reduced somewhat. This is because there
would be an interactive effect between the prepayment probabilities and the security’s discount from
face value as the current interest rate increased.
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security, can be computed at any level of the current interest rate. The interest
rate elasticity of each security is given at the bottom of Table I for current
interest rates of 6 percent, 8 percent, and 12 percent.'?

C. 1. The Amortization Feature

The impact of the amortization feature on the risk and expected returns of
amortizing bonds relative to otherwise identical nonamortizing ones can be seen
by comparing the elasticities in Columns 5 and 6 with those in Columns 3 and 4,
respectively. These comparisons show that the prices of amortizing securities are
slightly less sensitive to interest rate fluctuations than their nonamortizing
counterparts, but the impact of the amortization feature on expected return is
small (for the assumed parameters of the interest rate process and when the term
to maturity of the securities is 30 years).

When the current interest rate is 12 percent, the absolute value of the interest
rate elasticity of the GNMA security with the optimal call policy is .00315 less
than that of the nonamortizing, callable bond. This means that the expected
return on the GNMA security is 8 basis points per year (.00315 x .247) less than
the expected return on the nonamortizing, callable bond.

C. 2 The Call Option

Comparison of Column 5 with Column 6 shows that the effect of the call option
is to reduce the risk and expected return of the GNMA security. This phenomenon
occurs because the price of a callable security equals the price of an otherwise
identical noncallable security less the value of the call option. The values of the
noncallable security and the call option both decrease with increases in the
current interest rate; therefore, the price of a callable security is less sensitive to
changes in the current interest rate than the price of an otherwise identical
noncallable one. This effect is smaller for higher levels of the current interest rate
because the call feature has less effect on the value of the callable security at
higher levels of the current interest rate. Again, this is because the bond is less
likely to be called when the current interest rate is high.

The difference between the elasticities in Columns 5 and 6 imply that the
expected return on the GNMA security with the optimal call policy is 23 basis
points lower than the expected return on the noncallable, amortizing bond when
the current interest rate is 12 percent and the difference is 92 basis points when
the current interest rate is 6 percent.

C. 3. Suboptimal Prepayments

An increase in the expected rate of suboptimal prepayments decreases the interest
rate elasticity and, therefore, the interest rate risk and expected return of the
GNMA security. This phenomenon occurs because the risk associated with the
suboptimal prepayments is unsystematic and, therefore, unrewarded by the

" For a given change in the current interest rate, the change in the yield of pure discount bonds
with longer terms to maturity is larger the smaller the speed of adjustment parameter, k. Therefore,
the absolute values of the interest rate elasticities increase with decreases in &.
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capital market. Further, the suboptimal prepayments reduce the relevant risk of
the security, i.e., s(r, 7) in Equation (9), because they reduce the sensitivity of the
security’s price to changes in the interest rate. This can be seen by comparing the
elasticities in Columns 6, 7, and 8. When the current interest rate is 12 percent
(6 percent), the expected return on the GNMA security with suboptimal prepay-
ments at 200 percent of FHA experience is 36 (47) basis points less than the
expected return on the GNMA security with the optimal call policy.’

D. Term to Maturity

Table II presents the solutions for the four types of securities when the term to
maturity is varied from zero to 30 years and when the current interest rate is 12
percent. Column 1 of the table gives the remaining term to maturity of each
security. Column 2 shows the yield-to-maturity of a pure discount bond whose
term to maturity is the same as that shown in Column 1. Thus, Column 2 gives
the term structure of interest rates resulting from the assumed market parameters
when the current interest rate is 12 percent. Columns 3 through 8 correspond to
the Columns in Table I and, for each term to maturity, Column 9 gives the mean
of the Poisson process generating prepayments at 100% of FHA experience.

Table II shows that when the term structure is descending and everywhere
above 8 percent, the prices of the noncallable bonds (Columns 3 and 5) and the
callable bonds with the optimal call policy (Columns 4 and 6) decline and
eventually approach an asymptote as the remaining term to maturity increases.
However, this behavior is sensitive to the combination of the coupon interest rate
and the parameters of the interest rate process considered.

We do not report the results here, but other numerical solutions show that the
prices of noncallable securities which have coupon rates that are above the long
run interest, but below the current interest rate, first decline and then increase
with increases in the remaining terms to maturity of the bonds. This occurs
because the current interest rate is expected to decrease far enough and fast
enough so that a noncallable security will eventually sell at a premium. However,
because the call feature precludes callable bonds from selling at a premium, the
prices of nonamortizing, callable bonds and GNMA securities with the optimal
call policy decline and approach an asymptote as the term to maturity is
lengthened.

Examination of Columns 7 and 8 shows that the value of the GNMA security
with suboptimal prepayments does not approach an asymptote as the term to
maturity is lengthened to 30 years. Instead, the prices decrease rapidly as the
remaining term to maturity is increased from 25 to 30 years. This phenomenon
occurs because the value of a GNMA security depends on the expected rate of
future prepayments and, as shown in Column 9, the empirically estimated
prepayment probabilities are low in the first two years of the security’s life and
then increase dramatically in Years 3 and 4.

13 Evidence on the historical rate of return experience of GNMA securities is available in Dunn and
McConnell [7] and in Waldman and Baum [23].
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D. 1. The Amortization Feature

When the term structure is downward sloping, the values of the amortizing
securities increase relative to the values of nonamortizing ones as the remaining
term to maturity becomes shorter. This result occurs because the final balloon
payment on a nonamortizing security is discounted at higher interest rates as the
remaining term to maturity becomes shorter and the current interest rate is held
constant at 12 percent. At each term to maturity, the value of the GNMA security
with the optimal call policy is greater than the value of the nonamortizing,
callable bond. With 30 years to maturity, the difference in values (Column 6 less
Column 4) is only $.29. This difference increases to $2.05 when the term to
maturity is four years and then declines to $1.18 when the term to maturity is
one year. The difference between the values of the amortizing, noncallable bond
(Column 5) and the nonamortizing, noncallable bond (Column 3) increases from
$.08 to $1.64 as the term to maturity declines from 30 years to 3 years. This
difference then declines to $1.15 when the term to maturity is one year.

D. 2. The Call Option

The effect of changes in the term to maturity on the value of the call option can
be seen by comparing the noncallable bonds with their callable counterparts (i.e.,
Column 3 less Column 4 and Column 5 less Column 6). These comparisons show
that the value of the call option declines as the term to maturity becomes shorter
and that a call option on a nonamortizing security is more valuable than a call
option on an amortizing one. The latter effect is due -to the fact that the call
option prevents the security from selling at a premium. As discussed above, the
call option has a larger impact on the value of a GNMA security than the
amortization feature when the remaining term to maturity is long. However, the
amortizing feature has a larger impact on price than the call option when the
remaining term to maturity is short. In this case the crossover occurs when the
term to maturity becomes less than eight years.

D. 3. Suboptimal Prepayments

As the term to maturity is varied from 0 to 30 years, the effect of the suboptimal
prepayments on the value of the GNMA security can be seen by comparing
Columns 6, 7, and 8. In general, the effect of the suboptimal prepayments is
positive and larger the longer the term to maturity. However, because this effect
depends on both the pattern of the prepayment probabilities and the extent to
which the security is selling at a discount, the effect increases rapidly as the term
to maturity is increased from zero to five years and then decreases as the
remaining term to maturity is lengthened from 25 to 30 years.

As the remaining term to maturity decreases, the impact of suboptimal pre-
payments eventually becomes greater than the impact of optimal prepayments
so that the GNMA security becomes more valuable than the amortizing, non-
callable bond. For example, with prepayments at 100 percent of the historical
FHA experience, the GNMA security is more valuable than the amortizing,
noncallable bond when the remaining term to maturity is less than 10 years. This
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effect probably is somewhat overstated, however, because in practice we would
expect the prepayment probabilities to decrease with increases in the risk-free
interest rate.'*

V. Conclusion

In this paper we develop a model for the pricing of GNMA mortgage-backed pass-
through securities. The model is based on the general model for the pricing of
interest-contingent claims developed by Brennan and Schwartz [2] and Cox,
Ingersoll, and Ross [6]. A GNMA security is backed by homogenous, fully-
amortizing, callable mortgage loans. Additionally, mortgagors often prepay their
loans even when the market value of the loan is less than the call price. We model
each of the characteristics of the GNMA security and use a numerical solution
technique to analyze the impact of each feature on the price, risk, and expected
return of the security.

In general, the amortization and prepayment features increase the price of a
GNMA security and the callability feature decreases it. In terms of the absolute
magnitude, the callability feature has a greater impact on the value of the security
than either of the other two features when the remaining term to maturity is
long. However, the amortization feature has the largest impact on value when
the term to maturity is short. The effect of all three features is to reduce the
interest rate risk and, consequently, the expected return of a GNMA security
relative to other securities which do not have these features.

The analysis was undertaken with the hope that it would answer questions
raised by portfolio managers, financial analysts, security dealers, and government
officials about the pricing and investment performance of GNMA securities. A
further pressing need is an empirical study to determine if the prices generated
by the model are consistent with observed market prices. If the answer is
affirmative, then the model presented here should be useful to all active partici-
pants in the GNMA market.
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