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Matrix completion
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Can we recover the missing entries?




Policy evaluation

individuals
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Staggered adoption

e.g., Medicare




Contextual bandits

actions

states

Confounded data

e.g., (state, action) pairs with high reward will be exploited more



Matrix completion encodes wide variety of applications

Common goal
Impute missing entries
& de-noise observed entries

Impediment to a unified approach
different applications induce
different sparsity patterns



Formal setup

Expected outcomes: M € R™*"

Random outcomes: Y;; = M,;; + €4,
Binary mask: A € {0,1}"*"

Observation: Y;; = / 1_ /
?, if Aij =0

Given (Y, A), produce M such that M ~ M

error measured with respect to ||]/\Z — M|, :q€{F,2,00,...



Where does causality come into play?



Causality = missingness mechanism
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Under what conditionsis Y 1l A?




A brief history

Missing Completely at Random (MCAR)

|

Missing at Random (MAR)

|

Missing Not at Random (MNAR)



A brief history

Missing Completely at Random (MCAR)



Missing completely at random (MCAR)

» A;; iid. samples from Bernoulli(p)

»p>0

>»A 1Y (expected ratings)
» correlation = causation!

» e.g., A/B tests, RCTs

(missingness pattern) (potential ratings)

"‘@”

(stochasticity)



A brief history

Missing at Random (MAR)



Missing at random (MAR)

» 4;; independent sample from Bernoulli(p;;)
> pl] > (

» A LY |X (selection on observables)
(expected ratings)

(observables
e.g., covariates)

(missingness pattern) (potential ratings)

(o]

(stochasticity)



A brief history

Missing Not at Random (MNAR)



Missing not at random (MNAR)




An overview of matrix completion algorithms

» Spectral methods
» Optimization based methods

» Nearest neighbors or collaborative filtering



Spectral methods

» Estimate p;; (e.g. logistic regression)
» Replace missing entries with O

> Y, = Z szuszZT

7
R k
> Q — Z Szuz’l);:r
1=1

—~

> Mi; = (1/piz) - Qs

» [Gavish-Donoho ‘14, Chatterjee ‘15, Bhattacharya-Chatterjee ‘21, ...]



Optimization based methods

» Estimate p;; (e.g. logistic regression)

> M = argmin Z (1/pi;) -dist(Qij,lj;-j) + A - regularize(Q)
(4,5):Ai5=1
» Example: M = argmin Z (1/pii) - (Qi — i[ij)z + A || Ql«

(¢,7):A;;=1

_ 1
Q.= min = (Ul +VIE)

[Mazumder et al. '10]

» [Candes-Tao ‘10, Keshavan et al. ‘10, Mazumder et al. ‘10, Recht ‘11, Hastie et al. '15, ...]



Estimating propensities without covariates

» Assumption
> p = [pij] Is “nice” (e.g., low rank)

» Algorithm
» Run matrix completion on A (fully observed) to yield p = [ﬁzg]

» [Ma-Chen 19, Wang et al. ‘20, Bhattacharya-Chatterjee 21, ...]
» Relative performance guarantees, Ma-Chen 19

» Consistency, Bhattacharya-Chatterjee ‘21



Nearest neighbors aka collaborative filtering

» Find k “nearest neighbors” then average
» Cosine similarity
» Euclidean distance
» Manhattan distance
» and much much more...

» [Goldberg '92, Linden ‘03, Kleinberg ‘08, Koren ‘15, Lee et al. "18, ‘20, ...]



MCAR scorecard

» All wrt Frobenius norm except for nearest neighbors wrt [,

uUSvT [Chatterjee] | Lipschitz Arbitrary Approx. |nriz log® n
USvT [Chatterjee] Low-rank Arbitrary Approx. nr log6 n
Convex [Recht] Low-rank No Noise Exact nrlog?(n)
Convex [CandesPlan] | Low-rank Additive Approx. nr log2 (n)
Near Nghbr | [LeeliSoSh] Lipschitz Additive Approx. nt polylogn
Near Nghbr | [BoChLeeSh]| Low-rank Arbitrary Approx. nrow(1)
Non-Convex | [KeMonOh] Low-rank No Noise Exact nrlogn
Non-Convex | [KeMonOh] Low-rank Additive Approx. nrlogmn




Open question
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Open question

items

users

‘ recommendation systems ‘

e.g., a vegetarian will never go to steakhouse
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Open question

items

users

‘ recommendation systems ‘

e.g., a vegetarian will never go to steakhouse

time

individuals

| staggered adoption |

e.g., if data missing at time t, then missing at time t+1
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Open question

items

users

‘ recommendation systems ‘

e.g., a vegetarian will never go to steakhouse

time

individuals

| staggered adoption |

e.g., if data missing at time t, then missing at time t+1

action

-
state reward(s, a)

| contextual bandits ‘

e.g., (state, action) visited confounded with expected reward
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But...does the missingness mechanism matter?



A toy illustration

Ground truth matrix
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A toy illustration
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Canonical model
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A toy illustration

Ground truth matrix

Canonical model

MAR

“State-of-the-art” model
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A toy illustration

Ground truth matrix

Canonical model

MAR

“State-of-the-art” model

MNAR
minP(4;; =1) =0
i

Ay L Ay MAA
Open problem in [Ma-Chen’19]
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MCAR

Goal:
recover from observed

Observed MCAR samples

Recovered distribution
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Histogram of Softimpute samples
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Softimpute
[Hastie et al. "14]
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Our approach -



MAR
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MNAR

140 Histogram of MNAR samples
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MNAR data is abundant

» Recommendation systems

» Movies, products, news articles...

» Clinical trials
» ~35% dropout rate
» U.S. census

» ~40% data missing

34



Synthetic nearest neighbors (SNN)



Nearest neighbors (NN)

FORMULA1
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Synthetic controls (SC)

"What if California never passed Prop 997"

Model learning:

~ Y1 E[yz] California
B = argmin [ly; — X 1|3
BeS » .
I\ Xl X2 remaining
states
Counterfactual prediction:
Elyz] = X208
time

[Abadie ‘03, ‘10, ‘15, ...] 37



Synthetic nearest neighbors (SNN): NN meets SC




Step 1: Academic “Sudoku”

NC(i)

NR(j)




Step 1: Academic “Sudoku”

AC

Max biclique

Algorithms: [Alexe ‘03; Zhang "14; Lyu '20; Lu ‘20]

AR



Step 2: Create synthetic neighborhoods

B = PCR(X}", 1) (

\h X(ll) :Eél)




Step 3: Average

5@

Y1

o)

5@



When does SNN work?

» Why linear model?

» What class of missingness models?



In general, we cannot infer missing entries...

FORMULA 1
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Undetermined system: more unknowns than observations



...unless underlying ratings have additional structure

i
S
-

a few factors explain most of the data — low-rank approximation (r < min{m,n})



Low rank implies linear model (across users)

AR AR

T

latent user factors
(left singular vectors)

U



Low rank implies subspace inclusion (across movies)

AC J

VT latent movie factors
(right singular vectors)

AC J



Well-balanced spectra

Separation of signal & noise

AC ]

i ?
x{® ARM |
ng) AR®) 1

Smmin (E[XS9]) > smax (€8?) for all £ — 1,... .k

[Chamberlain '83; Fan "18; Bai '19; Cai '21]



What type of missingness is allowed?

Yij = (ui, vj) + €35

+ |AlLe|U,V

[Kallus 18, Athey et al. ‘21, ...]

(latent factors)

(missingness (potential
pattern) outcomes)

(stochasticity)



What this model allows for

(latent factors)

minP(4;;, =1) =0

t]
(missingness (potential A?,j Jﬁt Akﬁ
pattern) outcomes)
+ M Y A

(stochasticity)



Formal guarantees

Theorems (informal)

—_—

> Consistency: M;; — M;; = 0(1)

—_—

» Asymptotic normality: A/

i; — My ~ N(0,0%)

Entry-wise guarantees



Implications for experimental design



A motivating example from drug design

In-Vitro Studies

Clinical Trials

e ’f’g \é @\‘] I r
e e L N/0ad ]

Inefficient

slow and rigid > 10+ years

Costly

average $1.3 billion per drug development,
ethical concerns

High Failure Rate

Phase Il — 67% failure, Phase Ill — 75% failure

Can we identify the most promising therapies with

a limited experimental budget?
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A matrix completion perspective on experimental design

Synthetic drug design: m cell types and n therapies

Outcome of applying

» Goal therapy on cell type 1 therapies
» Recover outcomes of all m x n experiments \
» Constraint \

» Budget of O(m + n) experiments

m cell types




"Optimal” observation pattern

7 therapies
Implication of causal matrix completion result
Recover all m x n experiments
| with entry-wise error of ~ 1/Vk
m cell types :
from (m x k?) + (n x k°) experiments
AR :
(K?) Future guestion:

Optimal (adaptive) experimental design?
AC

(K*)



Towards heteroskedastic variance estimation



Towards heteroskedastic variance estimation

Confidence intervals require estimates of 07;23- = E[€?j]

In general, cannot recover under arbitrary heteroskedastic setting...

2
Assume 0;; are low-rank too!

Observe: E[Y;?] = E[(M;; +€i5)%] = Mzgj + Uz‘2j
Define: 3 = [07]
S = [E[Y;]

— rank(S) < (rank(M))? + rank(X)

57



Heteroskedastic variance estimation algorithm

Estimate E|Y;;] = M;;

—

M;j = SNN(Y;)

: 21 _ aAr2 2
Estimate E[Yij] — Mij T 0ij

M,fj + agj — SNN(Y,L-?)

Estimate Jz-zj

—_— o~

5 = (MF + 0%) — (M)’

]

58



Statistical guarantees

Suppose
M;; — M;; = Op(61)
2 2 S
(Mz’j — Oz’j) — (Mij — 04
Then,
g2 52 —

59



An important connection

‘causal inference is a missing data problem”
Vis-a-vis

“matrix completion is a missing data problem”

Causal Inference Matrix Completion

causal estimand error metric (norm)
confounded data missing not at random data
observational & experimental studies sparsity patterns
estimating potential outcomes imputing missing entries




THANK YOU

dshen24@berkeley.edu

This talk: https://arxiv.org/abs/2109.15154

Code: https://qithub.com/deshen24/syntheticNN
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https://github.com/deshen24/syntheticNN

