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The `Netflix prize' (Bennett and Lanning, 2007)

We have a large matrix of users vs movies/products

element  is the rating user i gave to movie j

A wide-range of modern applications involve observations organized in the form of a matrix

A canonical example is a collaborative filtering/recommender system:

(𝑖, 𝑗)



Adjacency matrices
Given a set of  nodes linked by edges

E.g. users on a social media network with edges representing friendships

Represented by an adjacency matrix:

 if there is an edge between nodes  and , else 
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Can be extended to weighted graphs



tf-idf matrices
Another example (a weighted bipartite graph) is a term-document matrix from text analysis

We have a large matrix of documents vs tokens

element (i,j) is the frequency of token j in document i (or a related quantity)



An agent explores a state space  using a set of actions 

The reward function is a  matrix of states versus actions

element (i,j) gives the reward from taking action  in state 

Reward functions in reinforcement learning

 

|| × ||

𝑖 ∈ 

𝑗 ∈ 



Panel data
Consists of  individuals observed over  time periods

 is the measured outcome for unit  at time 

In causal settings, we also have a binary treatment/control matrix

 if unit  received treatment at time , else .

Thus, we have
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O�ten, we are interested in, but do not observe the entire matrix

in recommender systems, we only observe user ratings on a sparse subset of movies
in reinforncement learning, at any time, we have only taken a subset of actions in each state
in a panel data, we only observe individual responses to treatment or control at any time



Panel data
Recall we had

 

We can write this as two potential outcomes matrices

,  
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Matrix completion methods seek to impute missing values

can help decide which product to recommend
can help decide which action to take in which state
can help impute potential outcomes to make causal inference



Matrix completion requires imposing structure on the underlying matirx

How can we formalize that

Someone who like "The Godfather" probably likes "The Godfather Part II"
Someone who likes "Sharknado" probably won't like Tarkovsky's "The Mirror"

Note typically this is done without knowning details of the movies/users

Based only on other entries in the matrix



E�ectively summarizes an  matrix with a lower-dimensional representation

use the partial observations to estimate this lower-dim structure
use the lower-dim structure to impute missing elements

𝑚 × 𝑛



E�ectively summarizes an  matrix with a lower-dimensional representation

use the partial observations to estimate this lower-dim structure
use the lower-dim structure to impute missing elements

𝑚 × 𝑛

Di�erent settings have di�erent structure

term-document matrices are sparse with lots of 0s (each document has only a small subset of all possible
words in the vocabulary)
movie-ratings matrices are dense but "low-rank"



The rank of a matrix is the number of:

linearly independent rows
linearly independent columns
nonzero singular values

All of these are the same!



Problem setup
We observe a matrix  partially (and perhaps noisily) at locations 

 is the `true matrix'

 is a binary masking matrix.

Write  for the matrix:

 if 
 if 

Given , we want a reconstruction  that is as close as possible to  according to some metric.

𝑋 (𝑖, 𝑗) ∈ Ω

𝐗 ∈ ℝ
𝑚×𝑛

= +𝑌𝑖𝑗 𝑋𝑖𝑗 𝜖𝑖𝑗

Ω = {0, 1}𝑚×𝑛

𝑌Ω

[ 𝑌 =Ω ]𝑖𝑗 𝑌𝑖𝑗 = 1Ω𝑖𝑗

[ 𝑌 =?   Ω ]𝑖𝑗 = 0Ω𝑖𝑗

𝑌Ω 𝑀 𝑋



Baseline model
Assume  for vectors 

How many parameters must we estimate?
How can we interpret these parameters?

= +𝑋𝑖𝑗 𝑢𝑖 𝑣𝑗 𝐮 ∈ , 𝐯 ∈ℝ
𝑚

ℝ
𝑛

( − ( + ) + 𝜆(‖𝐮 + ‖𝐮 )min
𝐮,𝐯∑(𝑖,𝑗)∈Ω 𝑌𝑖𝑗 𝑢𝑖 𝑣𝑗 )

2 ‖2
2

‖2
2



The earlier model can be modified as 

This is just a rank-1 approximation

A rank-R approximation takes the form 

Matrix factorized model

=𝑋𝑖𝑗 𝑢𝑖𝑣𝑗

=𝑋𝑖𝑗 ∑
𝑟

𝑘=1
𝑢𝑖𝑘𝑣𝑘𝑗
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Interpretation:

each row (user) and column (movie) is embedded in an -dim space
Element  is inner-product of the two -dim feature-vectors
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The earlier model can be modified as 

This is just a rank-1 approximation

A rank-R approximation takes the form 

Matrix factorized model

=𝑋𝑖𝑗 𝑢𝑖𝑣𝑗

=𝑋𝑖𝑗 ∑
𝑟

𝑘=1
𝑢𝑖𝑘𝑣𝑘𝑗

Interpretation:

each row (user) and column (movie) is embedded in an -dim space
Element  is inner-product of the two -dim feature-vectors

𝑟

(𝑖, 𝑗) 𝑟

Can add a link function if e.g. matrix entries are positive



Estimation problem: Find the feature matrices that best explain the observations

Represent an  matrix with  numbers

For small , 
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2
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𝑟 𝑚𝑟 + 𝑟𝑚 << 𝑚𝑛
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Estimation problem: Find the feature matrices that best explain the observations

Represent an  matrix with  numbers

For small , 

( − ( )min𝐔,𝐕∑(𝑖,𝑗)∈Ω 𝑌𝑖𝑗 𝐮𝑇𝑖 𝐯𝑗 )
2

𝑚 × 𝑛 𝑚𝑟 + 𝑟𝑛

𝑟 𝑚𝑟 + 𝑟𝑚 << 𝑚𝑛

By itself this problem is not well-posed. Why?

Typically regularize 

 penalty is typically, but others can be used (e.g.  gives sparsity)

𝐔,𝐕

𝐿2 𝐿1



Given our observations, how do we solve for ?

 is nonconvex

𝐔,𝐕

( − ( ) + 𝜆(‖𝐔 + ‖𝐕 )min𝐔,𝐕∑(𝑖,𝑗)∈Λ 𝑌𝑖𝑗 𝐮𝑇𝑖 𝐯𝑗 )
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Given our observations, how do we solve for ?

 is nonconvex

𝐔,𝐕

( − ( ) + 𝜆(‖𝐔 + ‖𝐕 )min𝐔,𝐕∑(𝑖,𝑗)∈Λ 𝑌𝑖𝑗 𝐮𝑇𝑖 𝐯𝑗 )
2 ‖2 ‖2

Alternating minimization:

Starting with some initialization, solve for  given  and  given 
Each step is convex and equivalent to solving regularized linear regression

𝑈 𝑉 𝑉 𝑈



Incoherence (Candes and Recht 2009)
Matrix completion methods typically impose low-rank structure

However, low rank structure is not su�cient

E.g. consider a rank-1  matrix all of whose elements are 0 except for (1,N)𝑁 ×𝑁
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We have no hope of recovering some elements until we actually see them



A term you will o�ten see in incoherence

avoids situations like this



A term you will o�ten see in incoherence

avoids situations like this

Ensures the influence of each element in the matrix is similar

Equivalently, ensures the influence of the low-dimensional structure is spread across many elements of the
observed matrix



Also important is the pattern of missingness

E.g. Suppose there are no obsevations in an entire row/column of a matrix

Can we impute the missing values?
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Also important is the pattern of missingness

E.g. Suppose there are no obsevations in an entire row/column of a matrix

Can we impute the missing values?

O�ten assume the pattern of missingness is random

E.g. a Bernoulli coin flip at each element

Is this realistic?



Rather than decomposing the matrix into U and V and regularizing these, one can directly regularize the
reconstructed matrix

argmin rank(𝑀)  𝑠. 𝑡.    𝑀 = 𝑌Ω Ω
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reconstructed matrix

argmin rank(𝑀)  𝑠. 𝑡.    𝑀 = 𝑌Ω Ω

Does not require assuming the rank of the matrix
Can rigorously bound number of measurements required



Rather than decomposing the matrix into U and V and regularizing these, one can directly regularize the
reconstructed matrix

argmin rank(𝑀)  𝑠. 𝑡.    𝑀 = 𝑌Ω Ω

Does not require assuming the rank of the matrix
Can rigorously bound number of measurements required

Unfortunately, solving this is NP-hard



Can relax this is a number of ways. A common approach uses the nuclear norm 

 is the sum of the singular values of 
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Can relax this is a number of ways. A common approach uses the nuclear norm 

 is the sum of the singular values of 

‖𝑋‖
∗

‖𝑋 = ∑ (𝑋)‖
∗

𝜎𝑖 𝑋

The nuclear norm is the tightest convex envelope of the rank function

This is a convex problem

Can be solved in polynomial time use semidefinite programming



Given noisy measurements we can relax this as

min ‖𝑋   𝑠. 𝑡.   ‖ 𝑋 − 𝑌 ‖ < 𝛿‖∗ Ω Ω



Given noisy measurements we can relax this as

min ‖𝑋   𝑠. 𝑡.   ‖ 𝑋 − 𝑌 ‖ < 𝛿‖∗ Ω Ω

In Lagrangian form, this becomes

min ‖𝑋 + 𝜆(‖ 𝑋 − 𝑌 ‖)‖∗ Ω Ω



Stochastic Block Models
Another class of methods proceed by clustering rows/columns of the
observed matrix

E.g. consider a network of  nodes with an  adjacency matrix A

 if nodes  and  are connected

(wikipedia)

𝑁 𝑁 ×𝑁

= 1𝐴𝑖𝑗 𝑖 𝑗



Stochastic block models assume each node belongs to 1 of 
clusters

A  connectivity matrix gives edge probabilities between clusters

Given a partial observation of , estimate the cluster assignments and
connectivity matrix

(wikipedia)

𝐾 << 𝑁

𝐾 ×𝐾

𝐴



Tensor completion

(tensorflownet.readthedocs.io)

Tensors are multidimensional arrays that generalize matrices

A matrix is a second-order tensor
For an order-k tensor , we index elements as 𝑋 𝑋

⋯,𝑖1𝑖2 𝑖𝑘



Tensor completion

(tensorflownet.readthedocs.io)

Tensors are multidimensional arrays that generalize matrices

A matrix is a second-order tensor
For an order-k tensor , we index elements as 𝑋 𝑋

⋯,𝑖1𝑖2 𝑖𝑘

Applications:

video data, dynamic graphs
potential outcome matrices
probability tables



(Jiang et al 2017)

There are di�erent notions of tensor rank and tensor decomposition

Tucker decomposition

PARAFAC decomposition

Higher-order SVD

Theory and computation for tensor completion is significantly more challenging



There is a massive and very active literature studying and extending these models to more complex and
realistic applications

Incorporate constraints into the solution (e.g. underlying matrix is positive/positive-definite)
Incorporate side-information about the rows/columns
Incorporate more realistic mechanisms for missing data
Extend to higher-dimensional structures like tensors

There is also a massive literature with an algorithmic focus. Methods include

Spectral methods
Dual methods
Stochastic gradient descent
EM and MCMC

There is also lots of theoretical work

Lower bounds on number of samples required for recovery
Properties of various relaxations
Convergence properties of various algorithms
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