Experimental Evaluation of Causal Machine Learning

Kosuke Imai

Harvard University

Causal Machine Learning for Novel Settings Workshop
Purdue University

Joint work with Michael Lingzhi Li (MIT)

Motivation

- Two revolutions over the past 20 years:
 - causal inference
 - machine learning
- Causal machine learning
 - individualized treatment rules
 - 2 heterogeneous treatment effects
- Experimental evaluation of causal machine learning (ML)
 - ML algorithms do not necessarily work well in practice
 - uncertainty quantification is important and yet difficult
 - evaluate causal ML before putting it in practice

Evaluating Individualized Treatment Rules

- Individualized treatment rules (ITRs)
 - designed to increase efficiency of policies or treatments
 - personalized medicine, micro-targeting in business/politics
- Existing literature:
 - estimation of heterogeneous treatment effects
 - 2 active development of optimal ITRs
 - extensive use of ML algorithms
- Goal: use a randomized experiment to evaluate generic ITRs
 - use a separate experiment to evaluate ITRs developed with other data
 - use the same experiment to construct and evaluate ITRs
- Imai and Li. "Experimental Evaluation of Individualized Treatment Rules."
 Journal of the American Statistical Association, Forthcoming.

Key Contributions

- Neyman's repeated sampling framework
 - random treatment assignment, random sampling
 - no modeling assumption or asymptotic approximation
 - extend analysis to cross-fitting: random splitting

- 2 Evaluation measures
 - shortcomings of existing metrics
 - incorporating a budget constraint
 - overall evaluation metric for general ITRs

Evaluation without a Budget Constraint

- Setup
 - Binary treatment: $T_i \in \{0,1\}$
 - ullet Pre-treatment covariates: $X \in \mathcal{X}$
 - No interference: $Y_i(T_1 = t_1, T_2 = t_2, ..., T_n = t_n) = Y_i(T_i = t_i)$
 - Random sampling of units:

$$(Y_i(1), Y_i(0), X_i) \stackrel{\text{i.i.d.}}{\sim} \mathcal{P}$$

• Completely randomized treatment assignment:

$$\Pr(T_i = 1 \mid Y_i(1), Y_i(0), X_i) = \frac{n_1}{n} \text{ where } n_1 = \sum_{i=1}^n T_i$$

• Fixed (for now) ITR:

$$f: \mathcal{X} \longrightarrow \{0,1\}$$

- based on any ML algorithm or even a heuristic rule
- sample splitting for experimental data, separate observational data

Neyman's Inference for the Standard Metric

• Standard metric (Population Average "Value" or PAV):

$$\lambda_f = \mathbb{E}\{Y_i(f(X_i))\}$$

A natural estimator:

$$\hat{\lambda}_f(\mathcal{Z}) = \frac{1}{n_1} \sum_{i=1}^n Y_i T_i f(X_i) + \frac{1}{n_0} \sum_{i=1}^n Y_i (1 - T_i) (1 - f(X_i)),$$
treated units who should
he treated
not be treated

where
$$\mathcal{Z} = \{X_i, T_i, Y_i\}_{i=1}^n$$

- Unbiasedness: $\mathbb{E}\{\hat{\lambda}_f(\mathcal{Z})\} = \lambda_f$
- Usual variance:

 $t = \{0, 1\}$

$$\begin{split} \mathbb{V}\{\hat{\lambda}_f(\mathcal{Z})\} &= \frac{\mathbb{E}(S_{f1}^2)}{n_1} + \frac{\mathbb{E}(S_{f0}^2)}{n_0}, \\ \text{where } S_{ft}^2 &= \sum_{i=1}^n (Y_{fi}(t) - \overline{Y_f(t)})^2/(n-1), \\ Y_{fi}(t) &= 1\{f(X_i) = t\}Y_i(t), \text{ and } \overline{Y_f(t)} = \sum_{i=1}^n Y_{fi}(t)/n \text{ for } \end{split}$$

6 / 35

A Problem of Comparing ITRs Using the PAV

- $\lambda_f < \lambda_g$: but g is performing worse than the random (i.e., non-individualized) treatment rule whereas f is not
- Need to account for the proportion treated

Accounting for the Proportion of Treated Units

• Population Average Prescriptive Effect (PAPE):

$$\tau_f = \mathbb{E}\{Y_i(f(X_i)) - p_f Y_i(1) - (1 - p_f)Y_i(0)\}$$

where $p_f = \Pr(f(X_i) = 1)$ is the proportion treated under f

Estimating the Population Average Prescriptive Effect

• An unbiased estimator of PAPE τ_f :

$$\hat{\tau}_{f}(\mathcal{Z}) = \frac{n}{n-1} \underbrace{\left[\frac{1}{n_{1}} \sum_{i=1}^{n} Y_{i} T_{i} f(X_{i}) + \frac{1}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i}) (1 - f(X_{i})) \right]}_{\text{PAV of ITR}} \\ - \underbrace{\frac{\hat{p}_{f}}{n_{1}} \sum_{i=1}^{n} Y_{i} T_{i} - \frac{1 - \hat{p}_{f}}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i})}_{\text{I}}_{\text{I}} \right]}_{\text{PAV of ITR}}$$

PAV of random treatment rule with the same treated proportion

where
$$\hat{p}_f = \sum_{i=1}^n f(X_i)/n$$

- We also derive its variance, and propose its consistent estimator
- Not invariant to additive transformation: $Y_i + c$
- Solution: centering $\mathbb{E}(Y_i(1) + Y_i(0)) = 0 \rightsquigarrow \text{minimum variance}$

Estimating and Evaluating ITRs via Cross-Fitting

- Estimate and evaluate an ITR using the same experimental data
- How should we account for both estimation uncertainty and evaluation uncertainty under the Neyman's framework?
- Setup:
 - Learning algorithm

$$F:\mathcal{Z}\longrightarrow\mathcal{F}$$

 $\bullet \ \, \textit{K-} \textit{fold cross-} \textit{fitting:} \, \, \mathcal{Z} = \{\mathcal{Z}_1, \mathcal{Z}_2, \dots, \mathcal{Z}_K\}$

$$\hat{f}_{-k} = F(\mathcal{Z}_1, \mathcal{Z}_2, \dots, \mathcal{Z}_{k-1}, \mathcal{Z}_{k+1}, \dots, \mathcal{Z}_K)$$

Evaluation metric estimators:

$$\hat{\lambda}_{F} = \frac{1}{K} \sum_{k=1}^{K} \hat{\lambda}_{\hat{f}_{-k}}(\mathcal{Z}_{k}), \quad \hat{\tau}_{F} = \frac{1}{K} \sum_{k=1}^{K} \hat{\tau}_{\hat{f}_{-k}}(\mathcal{Z}_{k})$$

 Uncertainty over both evaluation data and all random sets of training data (of a fixed size) as well as treatment assignment

Causal Estimands

- Population Average Value (PAV)
 - Generalized ITR averaging over the random sampling of training data \mathcal{Z}^{tr} (due to random splitting)

$$\bar{f}_F(x) \ = \ \mathbb{E}\{\hat{f}_{\mathcal{Z}^{tr}}(x) \mid \mathsf{X}_i = \mathsf{x}\} \ = \ \mathsf{Pr}(\hat{f}_{\mathcal{Z}^{tr}}(x) = 1 \mid \mathsf{X}_i = \mathsf{x})$$

Estimand

$$\lambda_F = \mathbb{E}\left\{\bar{f}_F(X_i)Y_i(1) + (1 - \bar{f}_F(X_i))Y_i(0)\right\}$$

- Population Average Prescriptive Effect (PAPE)
 - Proportion treated

$$p_F = \mathbb{E}\{\bar{f}_F(X_i)\}.$$

Estimand

$$\tau_F = \mathbb{E}\{\lambda_F - p_F Y_i(1) - (1 - p_F) Y_i(0)\}.$$

Inference under Cross-Fitting

- Under Neyman's framework, the cross-fitting estimators are unbiased, i.e., $\mathbb{E}(\hat{\lambda}_F) = \lambda_F$ and $\mathbb{E}(\hat{\tau}_F) = \tau_F$
- The variance of the PAV estimator

$$\mathbb{V}(\hat{\lambda}_{F}) = \underbrace{\frac{\mathbb{E}(S_{\hat{f}1}^{2})}{m_{1}} + \frac{\mathbb{E}(S_{\hat{f}0}^{2})}{m_{0}}}_{\text{evaluation uncertainty}} + \underbrace{\mathbb{E}\left\{\operatorname{Cov}(\hat{f}_{\mathcal{Z}^{tr}}(\mathsf{X}_{i}), \hat{f}_{\mathcal{Z}^{tr}}(\mathsf{X}_{j}) \mid \mathsf{X}_{i}, \mathsf{X}_{j})\tau_{i}\tau_{j}\right\}}_{\text{estimation uncertainty}}$$

$$- \frac{K - 1}{K} \mathbb{E}(S_{F}^{2})$$

for
$$i \neq j$$
 where m_t is the size of the training set with $T_i = t$, $\tau_i = Y_i(1) - Y_i(0)$, $S_F^2 = \sum_{k=1}^K \left\{ \hat{\lambda}_{\hat{f}_{-k}}(\mathcal{Z}_k) - \overline{\hat{\lambda}_{\hat{f}_{-k}}(\mathcal{Z}_k)} \right\}^2 / (K - 1)$

efficiency gain due to cross—fitting

ullet Analogous results for the PAPE au_F

Evaluation with a Budget Constraint

- Policy makers often face a binding budget constraint p
- Scoring rule:

$$s: \mathcal{X} \longrightarrow \mathcal{S}$$
 where $\mathcal{S} \subset \mathbb{R}$

- Example: CATE $s(x) = \mathbb{E}(Y_i(1) Y_i(0) \mid X_i = x)$
- (Fixed) ITR with a budget constraint:

$$f(X_i, c) = 1\{s(X_i) > c\},\$$

where
$$c_p(f) = \inf\{c \in \mathbb{R} : \Pr(f(X_i, c) = 1) \le p\}$$

PAPE under a budget constraint

$$\tau_{fp} = \mathbb{E}\{Y_i(f(X_i, c_p(f))) - pY_i(1) - (1-p)Y_i(0)\}.$$

- We derive the bias (and its finite sample bound) and variance under the Neyman's framework
- Extensions: cross-fitting, diff. in PAPE between two ITRs

The Area Under Prescriptive Effect Curve (AUPEC)

- Measure of performance across different budget constraints
- We show how to do inference with and without cross-fitting
- Normalized AUPEC = average percentage gain using an ITR over the randomized treatment rule across a range of budget contraints

Simulations

- Atlantic Causal Inference Conference data analysis challenge
- Data generating process
 - 8 covariates from the Infant Health and Development Program (originally, 58 covariates and 4,302 observations)
 - population distribution = original empirical distribution
 - Model

$$\begin{split} Y_i(t) &= \mu(\mathsf{X}_i) + \tau(\mathsf{X}_i)t + \sigma(\mathsf{X}_i)\epsilon_i, \\ \text{where } t = 0, 1, \; \epsilon_i \overset{\mathrm{i.i.d.}}{\sim} \; \mathcal{N}(0, 1), \; \text{and} \\ \mu(\mathsf{x}) &= -\sin(\Phi(\pi(\mathsf{x}))) + \mathsf{x}_{43}, \\ \pi(\mathsf{x}) &= 1/[1 + \exp\{3(\mathsf{x}_1 + \mathsf{x}_{43} + 0.3(\mathsf{x}_{10} - 1)) - 1\}], \\ \tau(\mathsf{x}) &= \xi(\mathsf{x}_3\mathsf{x}_{24} + (\mathsf{x}_{14} - 1) - (\mathsf{x}_{15} - 1)), \\ \sigma(\mathsf{x}) &= 0.25 \sqrt{\mathbb{V}(\mu(\mathsf{x}) + \pi(\mathsf{x})\tau(\mathsf{x}))}. \end{split}$$

- ullet Two scenarios: large vs. small treatment effects $\xi \in \{2,1/3\}$
- Sample sizes: $n \in \{100, 500, 2, 000\}$

Results I: Fixed ITR

- No budget constraint, 20% constraint
- f: Bayesian Additive Regression Tree (BART)
- g: Causal Forest
- h: LASSO

			n = 100)		n = 500)		n = 200	0
Estimator	truth	cov.	bias	s.d.	cov.	bias	s.d.	cov.	bias	s.d.
Small effect	:									
$\hat{ au}_f$	0.066	94.3	0.005	0.124	96.2	0.001	0.053	95.1	0.001	0.026
$\hat{ au}_f(c_{0.2})$	0.051	93.2	-0.002	0.109	94.4	0.001	0.046	95.2	0.002	0.021
$\widehat{\Gamma}_f$	0.053	95.3	0.001	0.106	95.1	0.001	0.045	94.8	-0.001	0.024
$\widehat{\Delta}_{0.2}(f,g)$	-0.022	94.0	0.006	0.122	95.4	0.002	0.051	96.0	0.000	0.026
$\widehat{\Delta}_{0.2}(f,h)$	-0.014	93.9	-0.001	0.131	94.9	-0.000	0.060	95.3	-0.000	0.030
Large effect										
$\hat{ au}_f$	0.430	94.7	-0.000	0.163	95.7	0.000	0.064	94.4	-0.000	0.031
$\hat{ au}_f(c_{0.2})$	0.356	94.7	0.004	0.159	95.7	0.002	0.072	95.8	0.000	0.035
$\widehat{\Gamma}_f$	0.363	94.3	-0.005	0.130	94.9	0.003	0.058	95.7	0.000	0.029
$\widehat{\Delta}_{0.2}(f,g)$	-0.000	96.9	0.008	0.151	97.9	-0.002	0.073	98.0	-0.000	0.026
$\widehat{\Delta}_{0.2}(f,h)$	0.000	94.7	-0.004	0.140	97.7	-0.001	0.065	96.6	0.000	0.033

Results II: Estimated ITR

5-fold cross fitting

• F: LASSO

• std. dev. for n = 500 is roughly half of the fixed n = 100 case

		n = 100			n = 500			n = 2000)
Estimator	cov.	bias	s.d.	cov.	bias	s.d.	cov.	bias	s.d.
Small effect									
$\hat{\lambda}_{\it F}$	96.4	0.001	0.216	96.7	0.002	0.100	97.2	0.002	0.046
$\hat{ au}_{ extsf{ extsf{F}}}$	94.6	-0.002	0.130	95.5	-0.002	0.052	94.4	-0.000	0.027
$\hat{ au}_F(c_{0.2})$	95.4	-0.003	0.120	95.4	-0.002	0.043	96.8	0.001	0.029
$\widehat{\Gamma}_F$	98.2	0.002	0.117	96.8	-0.001	0.048	95.9	0.001	0.001
Large effect									
$\hat{\lambda}_H$	96.9	-0.007	0.261	96.5	-0.003	0.125	97.3	0.001	0.062
$\hat{ au}_{ extsf{ extsf{F}}}$	93.6	-0.000	0.171	93.0	0.000	0.093	95.3	0.001	0.041
$\hat{ au}_{F}(c_{0.2})$	94.8	-0.002	0.170	96.2	-0.005	0.075	95.8	0.001	0.037
$\widehat{\Gamma}_F$	98.5	0.001	0.126	98.9	0.005	0.053	99.0	0.001	0.026

Application to the STAR Experiment

- Experiment involving 7,000 students across 79 schools
- Randomized treatments (kindergarden):
 - $T_i = 1$: small class (13–17 students)
 - ② $T_i = 0$: regular class (22–25)
 - regular class with aid
- Outcome: SAT scores
- Literature on heterogeneous treatments in labor economics
- 10 covariates
 - 4 demographics: gender, race, birth month, birth year
 - 6 school characteristics: urban/rural, enrollment size, grade range, number of students on free lunch, percentage white, number of students on school buses
- Sample size: n = 1,911, 5-fold cross-fitting
- Average Treatment Effects:
 - SAT reading: 6.78 (s.e.=1.71)
 - SAT math: 5.78 (s.e.=1.80)

Results I: ITR Performance

		BART		Ca	usal Fo	rest		LASSO)
	est.	s.e.	treated	est.	s.e.	treated	est.	s.e.	treated
Fixed ITR									
No budget	constrai	nt							
Reading	0	0	100%	-0.38	1.14	84.3%	-0.41	1.10	84.4%
Math	0.52	1.09	86.7	0.09	1.18	80.3	1.73	1.25	78.7
Writing	-0.32	0.72	92.7	-0.70	1.18	78.0	-0.30	1.26	80.0
Budget con	straint								
Reading	-0.89	1.30	20	0.66	1.23	20	-1.17	1.18	20
Math	0.70	1.25	20	2.57	1.29	20	1.25	1.32	20
Writing	2.60	1.17	20	2.98	1.18	20	0.28	1.19	20
Estimated I	TR								
No budget	constrai	nt							
Reading	0.19	0.37	99.3%	0.31	0.77	86.6%	0.32	0.53	87.6%
Math	0.92	0.75	84.7	2.29	0.80	79.1	1.52	1.60	75.2
Writing	1.12	0.86	88.0	1.43	0.71	67.4	0.05	1.37	74.8
Budget con	Budget constraint								
Reading	1.55	1.05	20	0.40	0.69	20	-0.15	1.41	20
Math	2.28	1.15	20	1.84	0.73	20	1.50	1.48	20
Writing	2.31	0.66	20	1.90	0.64	20	-0.47	1.34	20

Results II: Comparison between ML Algorithms

		Causal	Forest			BART	
	VS	BART	VS	LASSO	vs. LASSO		
	est.	95% CI	est.	95% CI	est.	95% CI	
Fixed ITR							
Math	1.55	[-0.35, 3.45]	1.83	[-0.50, 4.16]	0.28	[-2.39, 2.95]	
Reading	1.86	[-0.79, 4.51]	1.31	[-1.49, 4.11]	-0.55	[-4.02, 2.92]	
Writing	0.38	[-1.66, 2.42]	2.69	[-0.27, 5.65]	2.32	[-0.53, 5.15]	
Estimated	ITR						
Reading	-1.15	[-3.99, 1.69]	0.55	[-1.05, 2.15]	1.70	[-0.90, 4.30]	
Math	-0.43	[-2.57, 3.43]	0.34	[-1.32, 2.00]	0.77	[-1.99, 3.53]	
Writing	-0.41	[-1.63, 0.80]	2.37	[0.76, 3.98]	2.79	[1.32, 4.26]	

Results III: AUPEC

Fixed ITR

Estimated ITR

Evaluation of Heterogeneous Treatment Effects

- Another popular use of ML in causal inference
- Estimation of heterogeneous treatment effects: random forest, BART, Lasso, etc.

- How can we make valid inference for heterogeneous treatment effects discovered via a generic ML algorithm?
 - cannot assume ML algorithms converge uniformly
 - avoid computationally intensive method (e.g., repeated cross-fitting)
 - use Neyman's repeated sampling framework for inference

Setup and Causal Quantities of Interest

Conditional Average Treatment Effect (CATE):

$$\tau(\mathsf{x}) \ = \ \mathbb{E}(Y_i(1) - Y_i(0) \mid \mathsf{X}_i = \mathsf{x})$$

CATE estimation based on ML algorithm

$$s: \mathcal{X} \longrightarrow \mathcal{S} \subset \mathbb{R}$$

 Sorted Group Average Treatment Effect (GATE; Chernozhukov et al. 2019)

$$\tau_k := \mathbb{E}(Y_i(1) - Y_i(0) \mid c_{k-1}(s) \leq s(X_i) < c_k(s))$$

for $k=1,2,\ldots,K$ where c_k represents the cutoff between the (k-1)th and kth groups

GATE Estimation as ITR Evaluation

A natural GATE estimator

$$\hat{\tau}_{k} = \frac{K}{n_{1}} \sum_{i=1}^{n} Y_{i} T_{i} \hat{f}_{k}(X_{i}) - \frac{K}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i}) \hat{f}_{k}(X_{i}),$$

where
$$\hat{f}_k(\mathsf{X}_i) \ = \ 1\{s(\mathsf{X}_i) \geq \hat{c}_k(s)\} - 1\{s(\mathsf{X}_i) \geq \hat{c}_{k-1}(s)\}$$

Rewrite this as the PAPE:

$$\hat{\tau}_{k} = K \left\{ \underbrace{\frac{1}{n_{1}} \sum_{i=1}^{n} Y_{i} T_{i} \hat{f}_{k}(X_{i}) + \frac{1}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i}) (1 - \hat{f}_{k}(X_{i}))}_{\text{estimated PAV}} - \underbrace{\frac{1}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i})}_{\text{no one gets treated}} \right\}$$

We can use our previous results!

Inference for the Estimated GATE

• Exact variance for sample splitting case (bias is negligible):

$$\mathbb{V}(\hat{\tau}_k) = \mathcal{K}^2 \left\{ \underbrace{\frac{\mathbb{E}(S_{k1}^2)}{n_1} + \frac{\mathbb{E}(S_{k0}^2)}{n_0}}_{\text{usual variance}} - \underbrace{\frac{\mathcal{K} - 1}{\mathcal{K}^2(n-1)} \kappa_{k1}^2}_{\text{small adjustment term}} \right\},$$

where
$$S_{kt}^2 = \sum_{i=1}^n (Y_{ki}(t) - \overline{Y_k(t)})^2/(n-1)$$
 and $\frac{\kappa_{kt}}{Y_k(t)} = \mathbb{E}(Y_i(1) - Y_i(0) \mid \hat{f_k}(X_i) = t)$ with $Y_{ki}(t) = \hat{f_k}(X_i)Y_i(t)$, and $Y_k(t) = \sum_{i=1}^n Y_{ki}(t)/n$, for $t = 0, 1$

Asymptotic sampling distribution:

$$\frac{\hat{ au}_k - au_k}{\sqrt{\mathbb{V}(\hat{ au}_k)}} \stackrel{d}{\longrightarrow} N(0,1)$$

• Generalizes to cross-fitting case

Two Nonparametric Tests of Heterogeneity

- Treatment effect heterogeneity:
 - Null hypothesis

$$H_0: \hat{\boldsymbol{\tau}} = (\hat{\tau}_1 - \hat{\tau}, \cdots, \hat{\tau}_K - \hat{\tau})^{\top}$$

Reference distribution

$$\hat{\boldsymbol{ au}}^{ op} \boldsymbol{\Sigma}^{-1} \hat{\boldsymbol{ au}} \stackrel{d}{\longrightarrow} \chi_K^2$$

- Rank-consistent treatment effect heterogeneity:
 - Null hypothesis

$$H_0^*$$
: $\tau_1 \leq \tau_2 \leq \cdots \leq \tau_K$

Reference distribution

$$(\hat{oldsymbol{ au}} - oldsymbol{\mu}^*(\hat{oldsymbol{ au}}))^ op oldsymbol{\Sigma}^{-1} (\hat{oldsymbol{ au}} - oldsymbol{\mu}^*(\hat{oldsymbol{ au}})) \overset{d}{\longrightarrow} ar{\chi}_K^2$$

where

$$\mu^*(\mathbf{x}) = \underset{\mu}{\operatorname{argmin}} \|\mu - \mathbf{x}\|_2^2 \quad \text{subject to } \mu_1 \leq \mu_2 \leq \cdots \leq \mu_K,$$

with
$$\boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_K)^{\top}$$
 and $\boldsymbol{x} \in \mathbb{R}^K$

A Simulation Study

- 2016 ACIC competition (Dorie et al., 2019)
- Sample size n = 4,802 and 58 covariates, taken from a real study
- We generate data sets using their data generating process
- Sample size: n = 100, 500, and 2,500
- Number of groups: K = 5
- Sample splitting: trained on the original ACIC data
- Cross-fitting: 5-fold
- ML algorithms: BART, Causal Forest, and Lasso
- Finite sample properties (sample splitting and cross-fitting)
 - GATE estimation
 - Nonparametric tests (treatment effect homogeneity → false; rank-consistency → true)

Sample-Splitting Case: GATE

		$oldsymbol{n}_{t}$	$_{ m test} = 10$	00	$m{n}_{t}$	$_{ m est} = 50$	00	$oldsymbol{n}_{ m te}$	$_{ m est}=25$	00
Estimator	truth	bias	s.d.	coverage	bias	s.d.	coverage	bias	s.d.	coverage
Causal Fo	rest									
$\hat{ au}_1$	2.164	0.034	2.486	93.8%	0.041	1.071	95.0%	0.007	0.467	96.0%
$\hat{ au}_2$	4.001	0.011	2.551	93.7	-0.060	1.183	94.4	-0.002	0.510	95.3
$\hat{ au}_3$	4.583	-0.018	2.209	94.0	-0.003	0.956	96.4	0.020	0.421	95.8
$\hat{ au}_4$	4.931	-0.077	2.500	94.6	0.001	1.138	94.3	0.003	0.517	95.6
$\hat{ au}_5$	5.728	-0.058	3.332	96.0	-0.010	1.499	95.0	-0.009	0.661	95.2
BART										
$\hat{ au}_1$	2.092	0.016	3.188	94.0%	-0.014	1.402	96.2%	0.009	0.626	95.8%
$\hat{ au}_2$	3.913	0.127	2.918	95.1	0.028	1.388	94.0	-0.003	0.618	95.3
$\hat{ au}_3$	4.478	-0.077	2.218	94.3	-0.041	0.968	95.0	-0.001	0.425	95.1
$\hat{ au}_4$	5.042	-0.154	2.366	94.2	0.014	1.106	95.8	0.015	0.495	95.4
$\hat{ au}_5$	5.881	-0.019	2.510	94.7	-0.019	1.104	94.4	-0.000	0.489	95.0
LASSO										
$\hat{ au}_1$	3.243	0.028	2.507	94.1%	0.049	1.119	95.1%	0.003	0.769	95.1%
$\hat{ au}_2$	3.817	-0.012	1.848	93.6	-0.013	0.834	94.5	-0.000	0.684	95.4
$\hat{ au}_3$	4.318	-0.013	2.095	94.2	-0.002	0.930	94.5	0.010	0.516	95.0
$\hat{ au}_4$	4.788	-0.041	2.475	94.0	-0.015	1.101	94.6	-0.001	0.480	94.6
$\hat{ au}_5$	5.241	-0.046	3.921	94.4	0.021	1.739	95.1	0.002	0.505	95.3

Cross-Fitting Case: GATE

		n = 1	100			n =	500			n = 2	500	
Estimator	truth	bias	s.d.	coverage	truth	bias	s.d.	coverage	truth	bias	s.d.	coverage
Causal Forest												
$\hat{\tau}_1$	3.976	-0.053	2.971	94.0%	2.900	-0.007	1.572	95.6%	2.210	-0.007	0.594	97.7%
$\hat{\tau}_2$	4.173	-0.061	2.584	95.9	4.112	-0.038	1.075	98.2	4.057	0.011	0.541	98.6
$\hat{\tau}_3$	4.286	-0.012	2.560	96.7	4.510	-0.054	1.058	97.7	4.545	0.019	0.465	98.1
$\hat{ au}_4$	4.400	-0.119	2.865	97.4	4.799	0.066	1.149	97.9	4.951	-0.009	0.509	98.6
$\hat{\tau}_5$	4.569	0.140	3.447	94.1	5.086	0.001	1.620	96.0	5.643	-0.006	0.620	98.3
LASSO												
$\hat{\tau}_1$	4.191	-0.125	3.196	97.6%	4.017	-0.025	1.488	96.0%	3.752	-0.004	0.669	96.0%
$\hat{ au}_2$	4.205	0.036	2.281	97.5	4.137	-0.069	1.027	97.9	4.028	-0.019	0.590	98.9
$\hat{\tau}_3$	4.268	-0.126	2.354	96.6	4.291	-0.019	1.000	97.9	4.323	0.037	0.488	97.5
$\hat{ au}_4$	4.334	-0.003	2.536	96.8	4.430	0.035	1.174	96.8	4.571	0.033	0.642	97.2
$\hat{ au}_5$	4.406	0.111	3.615	96.2	4.530	0.047	1.811	95.0	4.732	0.022	0.697	95.3

Sample-Splitting Case: Nonparametric Tests

	$m{n}_{ ext{test}}$ =	= 100	$m{n}_{ ext{test}}$ =	= 500	$n_{ m test} = 2500$		
	rejection	median	rejection	median	rejection	median	
	rate	p-value	rate	p-value	rate	p-value	
Causal Forest							
H_0 : Treatment effect homogeneity							
$n_{ m train}=100$	5.2%	0.504	7.4%	0.529	19.6%	0.361	
$n_{\mathrm{train}} = 400$	9.0	0.459	22.0	0.254	74.4	0.002	
$n_{\mathrm{train}} = 2000$	13.0	0.367	40.4	0.092	96.0	0.000	
H_0^* : Rank consistency of GATEs							
$n_{\mathrm{train}} = 100$	4.0%	0.583	2.2%	0.624	2.2%	0.704	
$n_{\mathrm{train}} = 400$	2.8	0.687	0.2	0.820	0.2	0.907	
$n_{ m train}=2000$	1.2	0.707	0.2	0.852	0.0	0.967	
LASSO							
H_0 : Treatment effect homogeneity							

5.8%

7.0

6.2

4.6%

6.0

3.2

0.496

0.557

0.489

0.525

0.494

0.608

5.2%

4.0

9.4

3.0%

1.8

1.4

0.544

0.578

0.519

0.584

0.600

0.698

9.6%

5.4%

2.4

1.2

10.4

26.2

0.516

0.468

0.249

0.596

0.687

0.851 30 / 35

 $n_{\rm train} = 100$

 $n_{\rm train} = 400$

 $n_{\rm train} = 100$

 $n_{\rm train}=400$

 $n_{\rm train} = 2000$

 $n_{\rm train} = 2000$

 H_0^* : Rank consistency of GATEs

Cross-Fitting Case: Nonparametric Tests

	n =	100	n =	500	n=2500	
	rejection	median	rejection	median	rejection	median
	rate	p-value	rate	p-value	rate	p-value
Causal Forest						
Homogeneous Treatment Effects	1.4%	0.790	4.6%	0.712	51.4%	0.041
Consistent Treatment Effects	1.4%	0.702	0.8%	0.845	0.0%	0.976
LASSO						
Homogeneous Treatment Effects	0.6%	0.880	1.8%	0.850	9.0%	0.664
Consistent Treatment Effects	1.0%	0.722	0.6%	0.769	0.2%	0.889

Empirical Application

- National Supported Work Demonstration Program (LaLonde 1986)
- Temporary employment program to help disadvantaged workers by giving them a guaranteed job for 9 to 18 months
- Data
 - sample size: $n_1 = 297$ and $n_0 = 425$
 - outcome: annualized earnings in 1978 (36 months after the program)
 - 7 pre-treatment covariates: demographics and prior earnings
- Setup
 - ML algorithms: Causal Forest, BART, and LASSO
 - Sample-splitting: 2/3 of the data as training data
 - Cross-fitting: 3 folds
 - 5 fold cross-validation for tuning parameters

GATE Estimates (in 1,000 US Dollars)

	$\hat{ au}_1$	$\hat{ au}_2$	$\hat{ au}_3$	$\hat{ au}_4$	$\hat{ au}_5$
Sample-splitting					
Causal Forest	3.40	0.13	-0.85	-1.91	7.21
	[-1.29, 3.40]	[-5.37, 5.63]	[-5.22, 3.52]	[-5.16, 1.34]	[1.22, 13.19]
BART	2.90	-0.73	-0.02	3.25	2.57
	[-2.25, 8.06]	[-5.05, 3.58]	[-3.47, 3.43]	[-1.53, 8.03]	[-3.82, 8.97]
LASSO	1.86	2.62	-2.07	1.39	4.17
	[-3.59, 7.30]	[-1.69, 6.93]	[-5.39, 1.26]	[-2.95, 5.73]	[-2.30, 10.65]
Cross-fitting					
Causal Forest	-3.72	1.05	5.32	-2.64	4.55
	[-6.52, -0.93]	[-2.28, 4.37]	[2.63, 8.01]	[-5.07, -0.22]	[1.14, 7.96]
BART	0.40	-0.15	-0.40	2.52	2.19
	[-3.79, 4.59]	[-2.54, 2.23]	[-3.37, 2.56]	[-0.99, 6.03]	[-0.73, 5.11]
LASSO	0.65	0.45	-2.88	1.32	5.02
	[-3.65, 4.94]	[-3.28, 4.18]	[-5.38, -0.38]	[-1.83, 4.48]	[-0.14, 10.18]

Nonparametric Tests

	Causa	l Forest	BA	ART	LASSO	
	stat	p-value	stat	p-value	stat	p-value
Sample-splitting						
Homogeneous Treatment Effects	9.78	0.082	2.76	0.737	5.26	0.362
Rank-consistent Treatment Effects	3.07	0.323	1.13	0.657	3.14	0.302
Cross-fitting						
Homogeneous Treatment Effects	30.29	0.000	2.32	0.803	10.79	0.056
Rank-consistent Treatment Effects	0.06	0.691	0.04	0.885	0.45	0.711

Concluding Remarks

- Causal machine learning is everywhere
 - estimation of heterogeneous treatment effects (HTEs)
 - development of individualized treatment rules (ITRs)
- Inference about HTEs and ITRs has been largely model-based
 - We show how to experimentally evaluate HTEs and ITRs
 - No modeling assumption or asymptotic approximation is required
 - Complex machine learning algorithms can be used
 - Applicable to cross-fitting estimators
 - Simulations: good small sample performance
- Ongoing extension: dynamic ITRs
- Open source software: evalITR: Evaluating Individualized Treatment Rules at CRAN https://CRAN.R-project.org/package=evalITR