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Motivation

@ Two revolutions over the past 20 years:

© causal inference
© machine learning

@ Causal machine learning

@ individualized treatment rules
@ heterogeneous treatment effects

@ Experimental evaluation of causal machine learning (ML)

e ML algorithms do not necessarily work well in practice
e uncertainty quantification is important and yet difficult
e evaluate causal ML before putting it in practice
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Evaluating Individualized Treatment Rules

o Individualized treatment rules (ITRs)

o designed to increase efficiency of policies or treatments
o personalized medicine, micro-targeting in business/politics

o Existing literature:

@ estimation of heterogeneous treatment effects
@ active development of optimal ITRs
© extensive use of ML algorithms

@ Goal: use a randomized experiment to evaluate generic ITRs

@ use a separate experiment to evaluate ITRs developed with other data
@ use the same experiment to construct and evaluate ITRs

@ Imai and Li. “Experimental Evaluation of Individualized Treatment Rules.”
Journal of the American Statistical Association, Forthcoming.
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Key Contributions

© Neyman's repeated sampling framework

e random treatment assignment, random sampling
e no modeling assumption or asymptotic approximation
e extend analysis to cross-fitting: random splitting

@ Evaluation measures

e shortcomings of existing metrics
e incorporating a budget constraint
o overall evaluation metric for general ITRs
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Evaluation without a Budget Constraint

@ Setup

Binary treatment: T; € {0,1}

o Pre-treatment covariates: X € X

o Nointerference: Yi(T1 =t, To=ts,..., Tn=1t,) = Yi(T; = t;)
e Random sampling of units:

(Yi(1), Yi(0),%X;) =" P

Completely randomized treatment assignment:

Pr(T; =1 Yi(1), Yi(0),X;) = % where m =Y T;
i=1

o Fixed (for now) ITR:
f: X —4{0,1}
e based on any ML algorithm or even a heuristic rule
e sample splitting for experimental data, separate observational data
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Neyman's Inference for the Standard Metric

e Standard metric (Population Average “Value" or PAV):
Aro= E{Yi(f(X)}

@ A natural estimator:

5(2) = L SviTex) ,}Oivf(l ST X)),
i =1

treated units who should untreated units who should
be treated not be treated

where Z = {X;, T;, Y;}I,
o Unbiasedness: E{\r(Z)} = Ar

@ Usual variance:

Vi) = 2
ny no
where S2 = 37, (Ya(t) — Y(D)/(n — 1),
Yi(t) = 1{F(X;) = £} Yi(t), and Y¢(£) = 320, Yi(t)/n for
t={0,1}
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A Problem of Comparing ITRs Using the PAV

Average outcome

Random
Treatment

E[Yi(0)]

Proportion Treated, p

@ \r < A\g: but g is performing worse than the random (i.e.,
non-individualized) treatment rule whereas f is not

@ Need to account for the proportion treated
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Accounting for the Proportion of Treated Units

Average outcome
E[Yi(1)]

E[Yi(0)]

Prop. Treated, p
0.2

S

@ Population Average Prescriptive Effect

7 = E{Yi(f(X;)) — prYi(1) — (1 — pr) Yi(0)}

PAPE):

where pr = Pr(f(X;) = 1) is the proportion treated under f
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Estimating the Population Average Prescriptive Effect

@ An unbiased estimator of PAPE 7¢:

HE) = T+ Y
i=1

(1 = (X))

PAV of ITR

A n A n
pr 1—pr

- PESyT - Y v
m = o Mo 3 :

PAV of random treatment rule with
the same treated proportion

where pr =" £(X;)/n

@ We also derive its variance, and propose its consistent estimator

@ Not invariant to additive transformation: Y; + ¢

@ Solution: centering E(Y;(1) + Yi(0)) = 0 ~» minimum variance

9/35



Estimating and Evaluating ITRs via Cross-Fitting

o Estimate and evaluate an ITR using the same experimental data

@ How should we account for both estimation uncertainty and evaluation
uncertainty under the Neyman'’s framework?

@ Setup:

o Learning algorithm
F:Z2—F

o K-fold cross-fitting: Z = {21, 2s,..., 2k}
Fo = F(Z1,22, ..., Zk1, Zists - - 2K)
o Evaluation metric estimators:

K
N 1 N . 1 A
AF = ? ;:1:)\?7/((2’()7 F = R E:l: Tffk(zk)

@ Uncertainty over both evaluation data and all random sets of training
data (of a fixed size) as well as treatment assignment
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Causal Estimands

e Population Average Value (PAV)

o Generalized ITR averaging over the random sampling of training data
Z™ (due to random splitting)

fe(x) = E{fz«(x) | Xi =x} = Pr(fz«(x) =1|X; =x)
o Estimand

Ar = E{f(X;)Yi(1) + (1 — = (X;)) Yi(0)}

@ Population Average Prescriptive Effect (PAPE)
e Proportion treated _
pr = E{fe(Xi)}.
e Estimand
F = E{Ar — prYi(1) = (1 = pr)Yi(0)}.
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Inference under Cross-Fitting

@ Under Neyman's framework, the cross-fitting estimators are unbiased,

@ The variance of the PAV estimator

. E(S2) E(S2) . X
V()\F) = mil + mgo +E{COV(fgtr(X,‘),thr(XJ’)’X,‘,XJ')T,‘TJ'}

evaluation uncertainty estimation uncertainty

K-1
- TE(SE)
N——

efficiency gain due
to cross—fitting

for i # j where m; is the size of the training set with T; = t,
o 2
= Yi(1) - Yi(0), S = i, {0 (20 -3 (20} /(K- 1)
@ Analogous results for the PAPE 7f

12/35



Evaluation with a Budget Constraint

@ Policy makers often face a binding budget constraint p

@ Scoring rule:
s: X —S where SCR

o Example: CATE s(x) = E(Yi(1) — Y;(0) | X; = x)
o (Fixed) ITR with a budget constraint:
f(Xi,c) = 1{s(X;) > c},

where ¢,(f) = inf{c e R: Pr(f(X;,c)=1) < p}
@ PAPE under a budget constraint

o = E{Yi(f(Xi, 6(f))) — pYi(1) — (1 = p) Yi(0)}.

@ We derive the bias (and its finite sample bound) and variance under
the Neyman's framework

o Extensions: cross-fitting, diff. in PAPE between two ITRs
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The Area Under Prescriptive Effect Curve (AUPEC)

Average outcome

~—
~—
—_—

E[Yi(f(xi> €/n
E[Yi(f(Xi, c1/n))]

Budget, p

@ Measure of performance across different budget constraints
@ We show how to do inference with and without cross-fitting
@ Normalized AUPEC = average percentage gain using an ITR over the

randomized treatment rule across a range of budget contraints
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Simulations

o Atlantic Causal Inference Conference data analysis challenge

o Data generating process
e 8 covariates from the Infant Health and Development Program
(originally, 58 covariates and 4,302 observations)
e population distribution = original empirical distribution

o Model

Yi(t) = p(Xi) +7(Xi)t + o (Xi)es,

i.i.d.

where t = 0,1, ¢; <" N(0,1), and

()
m(x) =
()
()

—sin(®(7(x))) + xa3,

1/[1 + exp{3(x1 + xa3 + 0.3(x10 — 1)) — 1}],
§(xaxaa + (xaa — 1) — (x5 — 1)),
0.251/V(pu(x) + 7(x)7(x)).

@ Two scenarios: large vs. small treatment effects £ € {2,1/3}
e Sample sizes: n € {100,500,2,000}

15/35



Results I: Fixed ITR

@ No budget constraint, 20% constraint

o f: Bayesian Additive Regression Tree (BART)
@ g: Causal Forest

e h: LASSO
n =100 n =500 n = 2000

Estimator  truth |cov. bias s.d. |cov. bias s.d. [cov. bias s.d.
Small effect

T 0.06694.3 0.005 0.124|96.2 0.001 0.053|95.1 0.001 0.026
7r(co.2) 0.051]/93.2 —0.002 0.109|94.4 0.001 0.046|95.2 0.002 0.021
Ff 0.053/95.3 0.001 0.106|95.1 0.001 0.045|94.8 —0.001 0.024
30,2(f,g) —0.022(94.0 0.006 0.122|95.4 0.002 0.051{96.0 0.000 0.026
Bo,z(ﬁ h) —0.014|93.9 —0.001 0.131{94.9 —0.000 0.060|95.3 —0.000 0.030
Large effect

T 0.430|94.7 —0.000 0.163|95.7 0.000 0.064|94.4 -0.000 0.031
7r(co.2) 0.356|94.7 0.004 0.159(95.7 0.002 0.072|95.8 0.000 0.035
s 0.363|94.3 —0.005 0.130(94.9 0.003 0.058|95.7 0.000 0.029
Aoz(f,g) —0.000(96.9 0.008 0.151|97.9 —0.002 0.073|98.0 —0.000 0.026
Eo.z(f7 h) 0.000|94.7 —0.004 0.140|97.7 —0.001 0.065|96.6 0.000 0.033
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Results Il: Estimated ITR

@ 5-fold cross fitting
e F: LASSO
@ std. dev. for n =500 is roughly half of the fixed n = 100 case

n =100 n = 500 n = 2000

Estimator cov. bias s.d. | cov. bias s.d. | cov. bias s.d.
Small effect

Xr 96.4 0.001 0.216 | 96.7 0.002 0.100 | 97.2 0.002 0.046
TF 946 —0.002 0.130 | 95.5 —0.002 0.052 | 94.4 —0.000 0.027
7r(co.2) 95.4 —0.003 0.120 | 95.4 —0.002 0.043 | 96.8 0.001 0.029
Tr 98.2 0.002 0.117 | 96.8 —0.001 0.048 | 95.9 0.001 0.001
Large effect

bye 96.9 —0.007 0.261 | 96.5 —0.003 0.125 | 97.3 0.001 0.062
TF 93.6 —0.000 0.171 | 93.0 0.000 0.093 | 95.3 0.001 0.041
7r(co.2) 948 —0.002 0.170 | 96.2 —0.005 0.075 | 95.8 0.001 0.037
Tr 98.5 0.001 0.126 | 98.9 0.005 0.053 | 99.0 0.001 0.026
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Application to the STAR Experiment

@ Experiment involving 7,000 students across 79 schools
e Randomized treatments (kindergarden):
@ T, =1: small class (13-17 students)
@ T, =0: regular class (22-25)
© regular class with aid
@ Outcome: SAT scores
@ Literature on heterogeneous treatments in labor economics
@ 10 covariates
e 4 demographics: gender, race, birth month, birth year
o 6 school characteristics: urban/rural, enrollment size, grade range,
number of students on free lunch, percentage white, number of
students on school buses
@ Sample size: n = 1,911, 5-fold cross-fitting

(]

Average Treatment Effects:

o SAT reading: 6.78 (s.e.=1.71)
o SAT math: 5.78 (s.e.=1.80)
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Results |: ITR Performance

BART Causal Forest LASSO
est. s.e. treated| est. s.e. treated| est. s.e. treated
Fixed ITR
No budget constraint
Reading 0 0 100% |—0.38 1.14 84.3% |—0.41 1.10 84.4%
Math 0.52 1.09 86.7 0.09 1.18 80.3 1.73 125 78.7
Writing —0.32 0.72 927 |—-0.70 1.18 78.0 [—-0.30 1.26 80.0
Budget constraint
Reading —0.89 1.30 20 066 123 20 |-1.17 118 20
Math 0.70 1.25 20 257 1.29 20 1.25 1.32 20
Writing 260 1.17 20 298 1.18 20 0.28 1.19 20
Estimated ITR
No budget constraint
Reading 0.19 037 99.3% | 031 0.77 86.6% | 032 0.53 87.6%
Math 0.92 0.75 84.7 229 080 79.1 1.52 1.60 75.2
Writing 1.12 0.86 88.0 1.43 071 674 0.05 137 748
Budget constraint
Reading 155 1.05 20 0.40 0.69 20 —0.15 1.41 20
Math 228 1.15 20 1.84 073 20 150 148 20
Writing 2.31 0.66 20 1.90 0.64 20 —0.47 1.34 20
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Results II: Comparison between ML Algorithms

Causal Forest BART
vs. BART vs. LASSO vs. LASSO
est. 95% CI est. 95% Cl est. 95% Cl

Fixed ITR

Math 1.55 [-0.35, 3.45] | 1.83 [-0.50, 4.16]| 0.28 [—2.39, 2.95]

Reading 1.86 [—0.79, 4.51]| 1.31 [-1.49, 4.11]|—0.55 [—4.02, 2.92]

Writing  0.38 [—1.66, 2.42] | 2.69 [-0.27, 5.65]| 2.32 [~0.53, 5.15]
Estimated ITR

Reading —1.15 [-3.99, 1.69]| 0.55 [—1.05, 2.15]| 1.70 [-0.90, 4.30]

Math  —0.43 [-2.57, 3.43]| 0.34 [-1.32,2.00]| 0.77 [-1.99, 3.53]

Writing —0.41 [~1.63,0.80]| 2.37 [0.76,3.98]| 2.79 [1.32, 4.26]
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Results I1l: AUPEC

Fixed ITR
BART Causal Forest LASSO
650.04 AUPEC = 1.52 (s.e. = 0.88) AUPEC = 1.02 (s.e. = 0.97) AUPEC = -0.06 (s.e. = 0.97)
g
O
D 647.5-
j=2)
£
£ 645.0-
S 4£fihgmﬂ$*ﬂ4§55=:::_
=
é 642.5+
[
&
§ 640.0-
x
637.5
0% 25% 50% 75% 100% 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

Estimated ITR

Maximum Proportion Treated

BART Causal Forest LASSO

° 650.07 AUPEC =1.75 (s.e. = 2.18) AUPEC = 1.47 (s.e. = 1.33) AUPEC =-0.19 (s.e. = 2.00)
8
) 6475+
j=2)
£
T 645.04
=
<
o5 642.5+
o
j=2)
© 640.0-
g
<

637.5

0% 25%  50% 75%  100% 0% 25% 50%  75%  100% 0% 25%  50%  75%  100%

Maximum Proportion Treated
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Evaluation of Heterogeneous Treatment Effects

@ Another popular use of ML in causal inference

o Estimation of heterogeneous treatment effects: random forest, BART,
Lasso, etc.

@ How can we make valid inference for heterogeneous treatment effects
discovered via a generic ML algorithm?

e cannot assume ML algorithms converge uniformly
o avoid computationally intensive method (e.g., repeated cross-fitting)
o use Neyman's repeated sampling framework for inference
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Setup and Causal Quantities of Interest

o Conditional Average Treatment Effect (CATE):
() = E(Yi(1) = Y(0) | X; = x)
@ CATE estimation based on ML algorithm
s: X —SCR

@ Sorted Group Average Treatment Effect (GATE; Chernozhukov et al.
2019)

e = E(Yi(1) - Yi(0) | cer(s) < (X)) < ci(s))

for k =1,2,..., K where ¢, represents the cutoff between the
(k —1)th and kth groups
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GATE Estimation as ITR Evaluation

o A natural GATE estimator

mm&a0:1wxpw¢n—uq)>qﬂ@}
@ Rewrite this as the PAPE:

1 n
K{ = ST Vi Tih (X +—— Yi(l— T)(1 — X
{nl; «( Z (X))

estimated PAV
1 n
v >}
Mo 5=

no one gets treated

@ We can use our previous results!
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Inference for the Estimated GATE

e Exact variance for sample splitting case (bias is negligible):

E(S2) E(S%) K—1

V(% — K2 k1 k0/ 2

(Tk) { n + no K2(n _ 1) K1 ’
usual variance small adjustment term

where S = Y27, (Yig(t) - Ve(@)2/(n—1) and
Kkt = E(Y,(].) ( ) | fk( ) t) with Yk,'(t) = fk(X,-)Y,-(t), and
Yi(©) = S0, Yie(t)/n, for t = 0,1

@ Asymptotic sampling distribution:

Tk — Tk d

V(%) o)

o Generalizes to cross-fitting case
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Two Nonparametric Tests of Heterogeneity

© Treatment effect heterogeneity:
o Null hypothesis

o Reference distribution

@ Rank-consistent treatment effect heterogeneity:

o Null hypothesis
Hy :mm <m <. <7g

o Reference distribution
N .y a 1A .l n d _
(7 —w* (7)) 71 (F - () -5 %
where
p(x) =

with g = (p1, p2, .-, k)" and x € R¥

argmin || — x||3  subject to puy < pp < -+
®

- < pk,
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A Simulation Study

@ 2016 ACIC competition (Dorie et al., 2019)
@ Sample size n = 4,802 and 58 covariates, taken from a real study

o We generate data sets using their data generating process

@ Sample size: n = 100,500, and 2,500

Number of groups: K =5

Sample splitting: trained on the original ACIC data

Cross-fitting: 5-fold

ML algorithms: BART, Causal Forest, and Lasso

Finite sample properties (sample splitting and cross-fitting)
@ GATE estimation

@ Nonparametric tests (treatment effect homogeneity ~ false;
rank-consistency ~~ true)
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Sample-Splitting Case: GATE

Test = 100 Test = 500 Test = 2500
Estimator truth bias s.d. coverage| bias s.d. coverage| bias s.d. coverage
Causal Forest
71 2.164| 0.034 2486 93.8% | 0.041 1.071 95.0% | 0.007 0.467 96.0%
T2 4.001| 0.011 2.551 93.7 —0.060 1.183 944 —0.002 0.510 95.3
T3 4.583| —0.018 2209 94.0 —0.003 0.956 96.4 0.020 0.421 95.8
T4 4.931| —0.077  2.500 94.6 0.001  1.138 94.3 0.003 0.517 95.6
75 5.728| —0.058 3.332 96.0 —0.010 1.499 95.0 —0.009 0.661 95.2
BART
1 2.092| 0.016 3.188 94.0% | —0.014 1.402 96.2% | 0.009 0.626 95.8%
T 3.913] 0.127 2918 95.1 0.028 1.388 94.0 —0.003  0.618 95.3
T3 4.478| —0.077 2218 94.3 —0.041  0.968 95.0 —0.001 0.425 95.1
Ta 5.042| —0.154 2.366 94.2 0.014 1.106 95.8 0.015  0.495 954
T5 5.881| —0.019 2.510 94.7 —0.019 1.104 944 —0.000 0.489 95.0
LASSO
T 3.243| 0.028 2507 94.1% | 0.049 1.119 951% | 0.003 0.769 95.1%
Ty 3.817| —0.012 1.848 93.6 —0.013 0.834 945 —0.000 0.684 954
T3 4.318| —0.013  2.095 94.2 —0.002 0.930 94.5 0.010 0.516 95.0
T4 4.788| —0.041 2475 94.0 —0.015 1.101 94.6 —0.001 0.480 94.6
T5 5.241| —0.046 3.921 944 0.021 1.739 95.1 0.002 0.505 95.3
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Cross-Fitting Case: GATE

n = 100 n = 500 n = 2500
Estimator truth bias s.d. coverage| truth bias s.d. coverage| truth bias s.d. coverage
Causal Forest
i 3.976 —0.053 2971 94.0% 2.900 —0.007 1.572 95.6% 2.210 —0.007 0.594 97.7%
Ty 4.173 —-0.061 2.584 95.9 4112 -0.038 1.075 98.2 4.057 0.011  0.541 98.6
T3 4.286 —0.012  2.560 96.7 4510 —0.054 1.058 97.7 4.545 0.019 0465 98.1
7 4.400 —-0.119 2.865 974 4799  0.066 1.149 97.9 4.951 —0.009 0.509 98.6
75 4569  0.140 3.447 94.1 5.086 0.001 1.620 96.0 5.643 —0.006 0.620 98.3
LASSO
71 4191 —-0.125 3.196 97.6% 4.017 —0.025  1.488 96.0% 3.752 —0.004 0.669 96.0%
T 4205 0.036 2281 97.5 4137 —-0.069  1.027 97.9 4.028 —0.019 0.590 98.9
T3 4.268 —0.126  2.354 96.6 4291 -0.019 1.000 97.9 4323 0.037 0488 97.5
T4 4.334 —0.003 2.536 96.8 4430 0.035 1.174 96.8 4571  0.033 0.642 97.2
Ts 4.406 0.111 3.615 96.2 4.530 0.047 1.811 95.0 4732 0.022 0.697 95.3
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Sample-Splitting Case: Nonparametric Tests

Test = 100 Test = 500 Tiest = 2500
rejection median |rejection median |rejection median
rate  p-value | rate p-value | rate p-value
Causal Forest
Hy: Treatment effect homogeneity
Nirain = 100 5.2% 0.504| 7.4% 0.529| 19.6% 0.361
Nirain = 400 9.0 0.459| 22.0 0.254| 744 0.002
Ntrain = 2000 13.0 0.367| 40.4 0.092| 96.0 0.000
H§: Rank consistency of GATEs
Ntrain = 100 4.0% 0.583| 2.2% 0.624| 2.2% 0.704
Nirain = 400 2.8 0.687| 0.2 0.820| 0.2 0.907
Nirain = 2000 1.2 0.707| 0.2 0.852| 0.0 0.967
LASSO
Hy: Treatment effect homogeneity
Nirain = 100 5.8% 0.496| 5.2% 0.544| 9.6% 0.516
Nirain = 400 7.0 0.557| 4.0 0.578| 10.4 0.468
Nirain = 2000 6.2 0.489| 94 0.519| 26.2 0.249
Hj: Rank consistency of GATEs
Ntrain = 100 4.6% 0.525|  3.0% 0.584| 5.4% 0.596
Nirain = 400 6.0 0.494 1.8 0.600| 24 0.687
Nirain = 2000 3.2 0.608 14 0.698 1.2 0.851
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Cross-Fitting Case: Nonparametric Tests

n = 100

n = 500

n = 2500

rejection median
rate  p-value

rejection median
rate  p-value

rejection median
rate  p-value

Causal Forest

Homogeneous Treatment Effects| 1.4%  0.790) 4.6%  0.712| 51.4%  0.041
Consistent Treatment Effects 1.4% 0.702| 0.8% 0.845| 0.0% 0.976
LASSO

Homogeneous Treatment Effects|  0.6% 0.880| 1.8% 0.850| 9.0% 0.664
Consistent Treatment Effects 1.0% 0.722| 0.6% 0.769| 0.2% 0.889
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Empirical Application

o National Supported Work Demonstration Program (LaLonde 1986)

@ Temporary employment program to help disadvantaged workers by
giving them a guaranteed job for 9 to 18 months

e Data
o sample size: n; = 297 and ng = 425
e outcome: annualized earnings in 1978 (36 months after the program)
e 7 pre-treatment covariates: demographics and prior earnings

@ Setup

ML algorithms: Causal Forest, BART, and LASSO
Sample-splitting: 2/3 of the data as training data
Cross-fitting: 3 folds

5 fold cross-validation for tuning parameters
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GATE Estimates (in 1,000 US Dollars)

T1 T2 73 T4 Ts5
Sample-splitting
Causal Forest 3.40 0.13 —0.85 —-1.91 7.21
[-1.29,3.40] | [-5.37,5.63] | [—5.22,3.52] [—5.16,1.34] [1.22,13.19]
BART 2.90 —0.73 —0.02 3.25 2.57
[—2.25,8.06] | [—5.05,3.58] | [—3.47,3.43] (—1.53,8.03] [—3.82,8.97]
LASSO 1.86 2.62 —-2.07 1.39 4.17
[-3.59,7.30] | [-1.69,6.93] | [—5.39,1.26] [—2.95,5.73] | [-2.30,10.65]
Cross-fitting
Causal Forest —-3.72 1.05 5.32 —2.64 4.55
[—6.52, —0.93] | [—2.28,4.37] [2.63,8.01] [-5.07,-0.22] [1.14,7.96]
BART 0.40 —0.15 —0.40 2.52 2.19
[-3.79,4.59] | [—2.54,2.23] | [—3.37,2.56] [—0.99, 6.03] [-0.73,5.11]
LASSO 0.65 0.45 —2.88 1.32 5.02
[—3.65,4.94] | [—3.28,4.18] | [-5.38,—0.38] | [—1.83,4.48] | [—0.14,10.18]
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Nonparametric Tests

Causal Forest BART LASSO
stat p-value stat p-value stat p-value
Sample-splitting
Homogeneous Treatment Effects 9.78 0.082 2.76 0.737 5.26 0.362

Rank-consistent Treatment Effects 3.07 0.323 1.13 0.657 3.14 0.302
Cross-fitting
Homogeneous Treatment Effects 30.29 0.000 2.32 0.803 | 10.79 0.056
Rank-consistent Treatment Effects 0.06 0.691 0.04 0.885 0.45 0.711
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Concluding Remarks

@ Causal machine learning is everywhere

e estimation of heterogeneous treatment effects (HTEs)
o development of individualized treatment rules (ITRs)

@ Inference about HTEs and ITRs has been largely model-based

We show how to experimentally evaluate HTEs and ITRs

No modeling assumption or asymptotic approximation is required
Complex machine learning algorithms can be used

Applicable to cross-fitting estimators

Simulations: good small sample performance

@ Ongoing extension: dynamic ITRs

@ Open source software: evallTR: Evaluating Individualized Treatment
Rules at CRAN https://CRAN.R-project.org/package=evallTR
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https://CRAN.R-project.org/package=evalITR

